6.在吸煙與患肺病是否相關(guān)的判斷中,有下面的說法:
①若K2的觀測值k>6.635,則在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病;
②從獨(dú)立性檢驗(yàn)可知在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系時(shí),若某人吸煙,則他有99%的可能患有肺;
③從獨(dú)立性檢驗(yàn)可知在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為吸煙與患肺病有關(guān)系時(shí),是指有5%的可能性使得推斷錯(cuò)誤.
其中說法正確的是③(填序號(hào))

分析 根據(jù)獨(dú)立性檢驗(yàn)的基本思想,對(duì)題目中的命題進(jìn)行分析、判斷即可.

解答 解:對(duì)于①,若K2的觀測值k>6.635,則在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系,
從獨(dú)立性檢驗(yàn)知,這一句話的意思是有99%的把握認(rèn)為這個(gè)推理是正確的,有1%的可能性認(rèn)為推理出現(xiàn)錯(cuò)誤,
并不是說在100個(gè)吸煙的人中必有99人患有肺病,①錯(cuò)誤;
對(duì)于②,從獨(dú)立性檢驗(yàn)可知在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系時(shí),
從獨(dú)立性檢驗(yàn)知,這一句話的意思是有99%的把握認(rèn)為這個(gè)推理是正確的,有1%的可能性認(rèn)為推理出現(xiàn)錯(cuò)誤,
并不是說某人吸煙,那么他有99%的可能患有肺病,②錯(cuò)誤;
③從獨(dú)立性檢驗(yàn)可知在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為吸煙與患肺病有關(guān)系時(shí),
從獨(dú)立性檢驗(yàn)知,這句話的意思是有95%的把握認(rèn)為這個(gè)推理是正確的,有5%的可能性使得推斷錯(cuò)誤,③正確.
綜上,以上說法正確的是③.
故答案為:③.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的基本思想與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知平面向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-2,m),且$\overrightarrow a$∥$\overrightarrow b$,則實(shí)數(shù)m的值為(  )
A.1B.-4C.-1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在△ABC中,∠B=30°,∠BAC=90°,AD⊥BC于D.現(xiàn)將△ACD沿直線AD旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,直線AC與直線BD所成角的取值范圍是(60°,90°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)xOy中,設(shè)圓M的半徑為1,圓心在直線2x-y-4=0上,若圓M上不存在點(diǎn)N,使NO=$\frac{1}{2}$NA,其中A(0,3),則圓心M橫坐標(biāo)的取值范圍(-∞,0)∪($\frac{12}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若m=$\sqrt{a}$-$\sqrt{a-1}$,n=$\sqrt{a-2}$-$\sqrt{a-3}$ (a≥3),則(  )
A.m>nB.m=n
C.m<nD.m與的n大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=2sin(2x+$\frac{π}{3}$).
(1)用五點(diǎn)作圖法作出f(x)一個(gè)周期上的簡圖.
(2)寫出f(x)的圖象是由y=sinx的圖象經(jīng)過怎樣的變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\overrightarrow a$=(1,-2),$\overrightarrow b$=(1,λ),且$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則實(shí)數(shù)λ的取值范圍是( 。
A.($\frac{1}{2}$,2)∪(2,+∞)B.($\frac{1}{2}$,+∞)C.(-∞,-2)∪(-2,$\frac{1}{2}$)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“x2≥1”是“x>1”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.cos$\frac{9π}{4}$+tan(-$\frac{7π}{6}$)+sin21π的值為$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案