14.在△ABC中,下列四個(gè)結(jié)論中正確的是(  )
①$\overrightarrow{AB}$+$\overrightarrow{BC}$>$\overrightarrow{AC}$
②$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$
③|${\overrightarrow{AB}}$|+|${\overrightarrow{BC}}$|>|${\overrightarrow{AC}}$|
④|${\overrightarrow{AB}}$|+|${\overrightarrow{BC}}$|=|${\overrightarrow{AC}}$|.
A.①③B.②③C.①④D.②④

分析 根據(jù)向量加法的幾何意義,以及三角形的兩邊之和大于第三邊定理便可找出正確選項(xiàng).

解答 解:$\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$;
∴結(jié)論②正確;
兩邊之和大于第三邊,∴$|\overrightarrow{AB}|+|\overrightarrow{BC}|>|\overrightarrow{AC}|$;
即結(jié)論③正確;
∴結(jié)論正確的是②③.
故選:B.

點(diǎn)評(píng) 考查向量加法的幾何意義,以及兩邊之和大于第三邊定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.為測(cè)得河對(duì)岸塔AB的高,先在河岸上選一點(diǎn)C,使C在塔底B的正東方向上,測(cè)得點(diǎn)A的仰角為60°,再由點(diǎn)C沿北偏東15°方向走10m到位置D,測(cè)得∠BDC=45°,則塔AB的高是( 。
A.10 mB.10$\sqrt{2}$ mC.10$\sqrt{3}$ mD.10$\sqrt{6}$ m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知拋物線(xiàn)C1:x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)F″與F關(guān)于x軸對(duì)稱(chēng),直線(xiàn)l:y=2與拋物線(xiàn)C1相交于A,B兩點(diǎn),與y軸相交于M點(diǎn),且$\overrightarrow{F″A}$•$\overrightarrow{FB}$=-5.
(1)求拋物線(xiàn)C1的方程;
(2)若以F″,F(xiàn)為焦點(diǎn)的橢圓C2過(guò)點(diǎn)($\frac{\sqrt{3}}{2}$,$\frac{\sqrt{2}}{2}$).
①求橢圓C2的方程;
②過(guò)點(diǎn)F的直線(xiàn)與橢圓C2相交于P,Q兩點(diǎn),且$\overrightarrow{PF}$=2$\overrightarrow{FQ}$,求|$\overrightarrow{MP}$+$\overrightarrow{MQ}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,a=3$\sqrt{3}$,b=3,A=$\frac{π}{3}$,則C=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(Ⅰ)若t∈R,t≠0時(shí),求復(fù)數(shù)z=$\frac{1}{t}$+ti的模的取值范圍;
(Ⅱ)在復(fù)數(shù)范圍內(nèi)解關(guān)于z方程|z|2+(z+$\overline z$)i=$\frac{3-i}{2+i}$(i為虛數(shù)單位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知拋物線(xiàn)C:y2=2px(p>0)的交點(diǎn)為F,過(guò)F且傾斜角為$\frac{π}{4}$的直線(xiàn)l被拋物線(xiàn)C截得的線(xiàn)段長(zhǎng)為8.
(1)求拋物線(xiàn)C的方程;
(2)已知直線(xiàn)y=-x和拋物線(xiàn)C交于點(diǎn)O,A,線(xiàn)段AO的中點(diǎn)為Q,在AO的延長(zhǎng)線(xiàn)上任取一點(diǎn),P作拋物線(xiàn)C的切線(xiàn),兩切點(diǎn)分別為M、N,直線(xiàn)MQ交拋物線(xiàn)C于另一點(diǎn)B,問(wèn)直線(xiàn)NB的斜率k0是否為定值?如果是,求k0的值,否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.記$\sum_{i=1}^n{a_i}$=a1+a2+…+an,又知f(x)=$\frac{1}{{{x^2}+1}}$,則$\sum_{i=1}^{100}$f(i)+$\sum_{i=2}^{100}$f($\frac{1}{i}$)的值為( 。
A.100B.99$\frac{1}{2}$C.99D.98$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}中,a1=1,a2=2,且an+1=4an-3an-1(n∈N*,n≥2).
(Ⅰ)令bn=an+1-an,求證:數(shù)列{bn}為等比數(shù)列;
(Ⅱ)求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖所示三棱錐A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,則該三棱錐外接球的表面積為55π.

查看答案和解析>>

同步練習(xí)冊(cè)答案