10.如圖,在正方體ABCD-A1B1C1D1中,M為BB1的中點(diǎn),則直線MC與平面ACD1所成角的正弦值為(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{3}}}{5}$

分析 連結(jié)B1D,BD,設(shè)AC∩BD=O,連結(jié)OM,則OM⊥平面ACD1,故而∠MCO為所求角.

解答 解:連結(jié)B1D,BD,設(shè)AC∩BD=O,連結(jié)OM,
則B1D⊥平面ACD1,OM∥B1D,
∴OM⊥平面ACD1,
∴∠MCO為MC與平面ACD1所成的角,
設(shè)正方體棱長為1,則MC=$\sqrt{1+\frac{1}{4}}$=$\frac{\sqrt{5}}{2}$,OM=$\frac{1}{2}$B1D=$\frac{\sqrt{3}}{2}$,
∴sin∠MCO=$\frac{OM}{MC}$=$\frac{\sqrt{15}}{5}$.
故選C.

點(diǎn)評 本題考查了線面角的計算,作出線面角是解題關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓x2+y2-4x+4y-1=0與圓x2+y2+2x-4y+1=0的位置關(guān)系是(  )
A.相離B.相交C.內(nèi)切D.外切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow a$與$\overrightarrow b$為單位向量,滿足$|\overrightarrow a-3\overrightarrow b|=\sqrt{13}$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.根據(jù)如圖所示的偽代碼,最后輸出的結(jié)果是60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C的對邊分別為a,b,c.已知$({a+b+c})({sinA+sinB-sinC})=({2+\sqrt{3}})asinB$.
(1)求角C的大;
(2)若b=8,c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且滿足an2-2Sn=2-an(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{3}{{{a_{2n}}{a_{2n+2}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知m,n表示兩條不同的直線,α,β表示兩個不同的平面,則下列四個命題中,所有正確命題的序號為②③
①若m⊥n,n?α,則m⊥α;            
②若α∥β,n?α,則n∥β;
③若m⊥α,m∥β,則α⊥β;            
④若m∥α,n?α,則m∥n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xoy中,角θ滿足$sin\frac{θ}{2}=-\frac{{\sqrt{10}}}{10},cos\frac{θ}{2}=\frac{{3\sqrt{10}}}{10},\overrightarrow{OA}=({12,5})$,設(shè)點(diǎn)B是角θ終邊上的一個動點(diǎn),則$|{\overrightarrow{OA}-\overrightarrow{OB}}|$的最小值為$\frac{56}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a>b>0且c<d,下列不等式中成立的一個是( 。
A.a+c>b+dB.a-c>b-dC.ad<bcD.$\frac{a}{c}$>$\fracy2yeg4w$

查看答案和解析>>

同步練習(xí)冊答案