若雙曲線
x2
a2
-
y2
b2
=1
的左頂點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,2),則雙曲線的焦距為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由已知方程即可得出雙曲線的左頂點(diǎn)、一條漸近線方程與拋物線的焦點(diǎn)、準(zhǔn)線的方程,再根據(jù)數(shù)量關(guān)系即可列出方程,解出即可.
解答: 解:∵雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左頂點(diǎn)(-a,0)與拋物線y2=2px(p>0)的焦點(diǎn)F的距離為4,
p
2
+a
=4,
雙曲線的一條漸近線的方程是y=-
b
a
x
,而拋物線的準(zhǔn)線方程為x=-
p
2
,
∵雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,2),
∴2=
2b
a
,
p
2
=2,
∴p=4,a=b=2,
∴c=
a2+b2
=2
2

∴2c=4
2
,
故雙曲線的焦距為4
2

故答案為:4
2
點(diǎn)評(píng):本題考查雙曲線與拋物線的性質(zhì),注意題目“雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,2)”這一條件的運(yùn)用,另外注意題目中要求的焦距即2c,容易只計(jì)算到c,就得到結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x3-3(a+1)x2+6ax(a∈R).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>0時(shí),函數(shù)y=f(x)在閉區(qū)間[0,a+1]上的最大值為f(a+1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-2x-3,試討論函數(shù)f(5-x2)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P(x,y)在直線l:x+2y-3=0上運(yùn)動(dòng),則x2+y2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若程序執(zhí)行的結(jié)果是5,則輸入的x值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式|x+1|-|x-3|≤a-
5
a
的解集不為空集,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非負(fù)實(shí)數(shù)a、b、c滿足a+b+c=1,則a2+b2+c2+18abc的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=
m2
1+m2
y=
m2-m+1
1+m2
(m為參數(shù)),則曲線C的普通方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“ω=1”是“函數(shù)f(x)=cosωx在區(qū)間[0,π]上單調(diào)遞減”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案