8.對于數(shù)對序列P:(a1,b1),(a2,b2),…,(an,bn),(ai,bi∈R+,i=1,2,3,…,n),記f0(y)=0(y≥0),fk(y)=$\underset{max}{{x}_{k}=0,1,2,3,…,m}${bkxk+fk-1(y-akxk)}(y≥0,1≤k≤n),其中m為不超過$\frac{y}{a_k}$的最大整數(shù).(注:$\underset{max}{{x}_{k}=0,1,2,3,…,m}${bkxk+fk-1(y-akxk)}表示當(dāng)xk取0,1,2,3,…,m時,bkxk+fk-1(y-akxk)中的最大數(shù))
已知數(shù)對序列P:(2,3),(3,4),(3,p),回答下列問題:
(Ⅰ)寫出f1(7)的值;
(Ⅱ)求f2(7)的值,以及此時的x1,x2的值;
(Ⅲ)求得f3(11)的值時,得到x1=4,x2=0,x3=1,試寫出p的取值范圍.(只需寫出結(jié)論,不用說明理由).

分析 (Ⅰ)f1(7)=$\underset{max}{{k}_{i}=0,1,2,3}${3xi}=max{0,3,6,9}=9;
(Ⅱ)f2(7)=$\underset{max}{{x}_{i}=0,1,2}${4x2+f1(7-3x2)}=max{0+f1(7),4+f1(4),8+f1(1)},即可求f2(7)的值,以及此時的x1,x2的值;
(Ⅲ)求得f3(11)的值時,得到x1=4,x2=0,x3=1,即可寫出p的取值范圍.

解答 解:(Ⅰ)f1(7)=$\underset{max}{{k}_{i}=0,1,2,3}${3xi}=max{0,3,6,9}=9,當(dāng)x1=3時,f1(7)=9;
(Ⅱ)f2(7)=$\underset{max}{{x}_{i}=0,1,2}${4x2+f1(7-3x2)}=max{0+f1(7),4+f1(4),8+f1(1)},
x2=1時,f1(4)$\underset{max}{{x}_{i}=0,1,2}${3xi}=max{0,3,6}=6,∴x1=2時,f1(4)=6,
x2=2時,f1(1)=$\underset{max}{{x}_{i}=0}\{2{x}_{i}\}$=0,∴x1=0時,f1(1)=0,
∴f2(7)=max{9,4+6,8+0}=10,即x2=1,x1=2時,f2(7)=10;
(Ⅲ)求得f3(11)的值時,得到x1=4,x2=0,x3=1,4<p≤4.5.

點(diǎn)評 本題考查進(jìn)行簡單的合情推理,考查新定義,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,且AB∥CD,過點(diǎn)A作⊙O的切線,與CD,DB的延長線分別交于點(diǎn)P,Q.
(1)證明:AD2=AB•DP;
(2)若PD=3AB=3,BQ=$\sqrt{2}$,求弦CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實數(shù)a,b,c成等比數(shù)列,函數(shù)y=(x-2)ex的極小值為b,則ac等于( 。
A.-1B.-eC.e2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如表:
年齡(單位:歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)31012721
(Ⅰ)若以“年齡45歲為分界點(diǎn)”.由以上統(tǒng)計數(shù)據(jù)完成下面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為
“使用微信交流”的態(tài)度與人的年齡有關(guān):
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
贊成
不贊成
合計
(Ⅱ)若從年齡在[55,65),[65,75)的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查.記選中的4人中贊成“使用微信交流”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望
參考數(shù)據(jù)如下:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.甲幾何體(上)與乙?guī)缀误w(下)的組合體的三視圖如圖所示,甲、乙?guī)缀误w的體積分別為V1、V2,則V1:V2等于1:3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某多面體的三視圖,則此多面體的體積等于( 。
A.$\frac{32}{3}$B.16C.$\frac{64}{3}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是某幾何體的三視圖,則該幾何體體積是( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{5\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)y=$\sqrt{4x-3}$+$\sqrt{11-4x}$($\frac{3}{4}$<x<$\frac{11}{4}$)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)的圖象關(guān)于直線x=$\frac{3}{2}$對稱,其與x軸兩交點(diǎn)間距離為1,由頂點(diǎn)與兩交點(diǎn)構(gòu)成三角形的面積為$\frac{1}{8}$,求二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案