18.cos190°cos160°+sin190°sin160°=$\frac{\sqrt{3}}{2}$.

分析 根據(jù)兩角差的余弦公式,代入可得答案.

解答 解:cos190°cos160°+sin190°sin160°=cos(190°-160°)=cos30°=$\frac{\sqrt{3}}{2}$,
故答案為:$\frac{\sqrt{3}}{2}$.

點評 本題考查的知識點是兩角差的余弦函數(shù),特殊角的三角函數(shù)值,難度不大,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在直棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=AA1=1,延長AC至D,使AC=CD,連接BD,B1D,C1D
(1)求證:AC1⊥B1D;
(2)求六面體BB1-A1ADC1的體積;
(3)求平面B1C1D與平面ABC所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32=9a2a6
(1)求數(shù)列{an}的通項公式;
(2)設bn+1=2log3$\frac{1}{{a}_{n}}$,求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合M={x|$\frac{x-3}{x+1}$<0},N={x|x≤-1},則集合{x|x≥3}等于( 。
A.M∩NB.M∪NC.R(M∩N)D.R(M∪N)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.與向量$\overrightarrow{a}$=(3,4)共線反向的單位向量$\overrightarrow{e}$=( 。
A.(-$\frac{3}{5}$,-$\frac{4}{5}$)B.(-$\frac{4}{5}$,$\frac{3}{5}$)C.(-$\frac{3}{5}$,-$\frac{4}{5}$),($\frac{3}{5}$,$\frac{4}{5}$)D.($±\frac{3}{5}$,$±\frac{4}{5}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,由圓O外一點A引圓的切線AB和割線ADE,B為切點,DE為圓O的直徑,且AD=DB.延長AB至C使得CE與圓O相切,連結(jié)CD交圓O于點F.
(Ⅰ)求$\frac{DE}{CE}$.
(Ⅱ)若圓O的半徑為1,求CF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知p:x∈A={x|x2+ax+b≤0,a∈R,b∈R},q:x∈B={x|x2-2mx+m2-4<0,m∈R}.
(1)若A={x|-1≤x≤4},求a+b的值;
(2)在(1)的條件下,若¬q是p的必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點為A,P($\frac{4\sqrt{2}}{3}$,$\frac{3}$)是C上的一點,以AP為直徑的圓經(jīng)過橢圓C的右焦點F.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(|k|≤$\frac{\sqrt{2}}{2}$)與橢圓C相交于A、B兩點,M為橢圓C上任意一點,且線段OM的中點與線段AB的中點重合,求|OM|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求下列函數(shù)圖象的對稱軸、對稱中心.
(1)y=sin($\frac{x}{2}$-$\frac{π}{4}$);
(2)y=2+sin($\frac{π}{3}$+2x).

查看答案和解析>>

同步練習冊答案