16.已知a,b∈R,那么“a+b>1”是“a2+b2>1”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義判斷即可.

解答 解:若“a+b>1”推不出“a2+b2>1”,如a=0.5,b=0.6,不是充分條件,
若“a2+b2>1”推不出“a+b>1”,如a=1,b=-2,不是必要條件,
故選:D.

點(diǎn)評 本題考查了充分必要條件,考查不等式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某網(wǎng)絡(luò)營銷部門隨機(jī)抽查了某市200名網(wǎng)友在2013年11月11日的網(wǎng)購金額,所得數(shù)據(jù)如下表:
網(wǎng)購金額(單位:千元)(0,1](1,2](2,3](3,4](4,5](5,6]合計
人數(shù)1624xy1614200
頻率0.080.12pq0.080.071.00
已知網(wǎng)購金額不超過3千元與超過3千元的人數(shù)比恰為3:2.
(1)試確定x,y,p,q的值,并補(bǔ)全頻率分布直方圖(如圖).
(2)該部門為了了解該市網(wǎng)友的購物體驗(yàn),從這200網(wǎng)友中,用分層抽樣的方法從網(wǎng)購金額在(1,2]和(4,5]的兩個群體中確定5人進(jìn)行問卷調(diào)查,若需從這5人中隨機(jī)選取2人繼續(xù)訪談.
①求此2人來自不同群體的概率是多少?
②(只理科生做)若來自網(wǎng)購金額在(1,2]的群體中的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,求過橢圓內(nèi)點(diǎn)P(4,2)且被P平分的弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)實(shí)數(shù)a,b滿足a2+b2=1,則乘積ab的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.平行四邊形ABCD中,$\overrightarrow{AB}=(1,2)$,$\overrightarrow{BD}=(-4,2)$,則該四邊形的面積為( 。
A.$\sqrt{5}$B.$2\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某城市自來水廠向全市供應(yīng)生產(chǎn)與生活用水,蓄水池現(xiàn)有水9千噸,水廠每小時向池中注入2千噸水,同時向全市供水,x小時內(nèi)供水總量為8$\sqrt{x}$,問:
(1)多少小時時池內(nèi)水量最少?
(2)當(dāng)蓄水池水量少于3千噸時,供水就會出現(xiàn)緊張現(xiàn)象,那么出現(xiàn)這種緊張情況有多長時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列不等式中成立的是(  )
A.若a>b,則ac2>bc2B.若a>b,則a2>b2
C.若a>b>0,則$\frac{a}$>$\frac{b+1}{a+1}$D.若a>b>0,則a+$\frac{1}$>b+$\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某甜品店制作一種蛋筒冰激凌,其上部分是半球形,下半部分呈圓錐形(如圖),現(xiàn)把半徑為10cm的圓形蛋皮等分成5個扇形蛋皮,用一個扇形蛋皮圍成圓錐的側(cè)面(蛋皮的厚度忽略不計).
(1)求該蛋筒冰激凌的高度;
(2)求該蛋筒冰激凌的體積(精確到0.01cm3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知全集U={x∈N+|x<9},(∁UA)∩B={1,6},A∩(∁UB)={2,3},∁U(A∪B)={5,7,8},則B=( 。
A.{2,3,4}B.{1,4,6}C.{4,5,7,8}D.{1,2,3,6}

查看答案和解析>>

同步練習(xí)冊答案