【題目】已知實數(shù),函數(shù)(x∈R).
(1) 求函數(shù)的單調(diào)區(qū)間;
(2) 若函數(shù)有極大值32,求實數(shù)a的值.
【答案】(1)見解析(2)a=27
【解析】
(1)首先求得函數(shù)的導(dǎo)函數(shù),然后分類討論確定函數(shù)的單調(diào)區(qū)間即可;
(2)由題意得到關(guān)于a的方程,解方程求得實數(shù)a的值,然后檢驗是否符合題意即可.
(1)∵f(x)=ax3-4ax2+4ax,
∴f′(x)=3ax2-8ax+4a=a(3x-2)(x-2).
令f′(x)=0,得x=或x=2.
當(dāng)a>0時,函數(shù)f(x)的單調(diào)增區(qū)間是,(2,+∞);單調(diào)減區(qū)間是.
當(dāng)a<0時,函數(shù)f(x)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,(2,+∞).
(2)∵f(x)=ax(x-2)2(x∈R)有極大值32,而
∴當(dāng)x=時,f(x)取得極大值32,即a2=32,∴a=27.
當(dāng)a=27時,由(1)知,f(x)在增,在遞減,符合題設(shè).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解我市參加2018年全國高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀察圖形,回答下列問題:
(1)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,估計本次考試成績的眾數(shù)、均值;
(3)根據(jù)評獎規(guī)則,排名靠前10%的同學(xué)可以獲獎,請你估計獲獎的同學(xué)至少需要所少分?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x,其焦點為F,直線過點P(﹣2,0)
(1)若直線l與拋物線C有且僅有一個公共點,求l的方程;
(2)若直線l與拋物線交于不同的兩點A、B,求|FA|+|FB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】石嘴山市第三中學(xué)高三年級統(tǒng)計學(xué)生的最近20次數(shù)學(xué)周測成績(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績的中位數(shù),并將同學(xué)乙的成績的頻率分布直方圖填充完整;
(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結(jié)論即可);
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學(xué)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),設(shè)關(guān)于的方程有個不同的實數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點與雙曲線的焦點重合,過橢圓C的右頂點B任作一條直線,交拋物線于A,B兩點,且,
(1)試求橢圓C的方程;
(2)過橢圓的右焦點且垂直于軸的直線交橢圓于兩點,M,N是橢圓上位于直線兩側(cè)的兩點.若,求證:直線MN的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:,直線l:.
(1)若直線l與圓O相切,求k的值;
(2)若直線l與圓O交于不同的兩點A,B,當(dāng)為銳角時,求k的取值范圍;
(3)若,P是直線l上的動點,過P作圓O的兩條切線PC,PD,切點為C,D,探究:直線CD是否過定點,若過定點,則求出該定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是AC的中點,四邊形BDEF是菱形,平面平面ABC,,,.
若點M是線段BF的中點,證明:平面AMC;
求平面AEF與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com