分析 (Ⅰ)直接利用等差數(shù)列建立方程組求出數(shù)列的通項(xiàng)公式.
(Ⅱ)利用通項(xiàng)公式求出數(shù)列的前n項(xiàng)和,進(jìn)一步利用放縮法和裂項(xiàng)相消法求出結(jié)果.
解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,已知:a3=5,S3=64,
則:$\left\{\begin{array}{l}{a}_{3}={a}_{1}+2d=5\\{S}_{8}=8{a}_{1}+\frac{7×8}{2}d=64\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a}_{1}=1\\ d=2\end{array}\right.$,
所以:an=2n-1
證明:(Ⅱ)利用an=2n-1,
所以:${S}_{n}=\frac{n(1+2n-1)}{2}={n}^{2}$,
$\frac{1}{{S}_{n}}=\frac{1}{{n}^{2}}<\frac{1}{n(n-1)}$=$\frac{1}{n-1}-\frac{1}{n}$(n≥2)
所以:$\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}+$…+$\frac{1}{{n}^{2}}$$<1+(1-\frac{1}{2})$+($\frac{1}{2}-\frac{1}{3}$)+…+$\frac{1}{n-1}-\frac{1}{n}$=2-$\frac{1}{n}$,
當(dāng)n=1時,$\frac{1}{{S}_{1}}=1=2-\frac{1}{1}=1$
所以:$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}≤2-\frac{1}{n}$(n≥1,n∈N).
點(diǎn)評 本題考查的知識要點(diǎn):利用等差數(shù)列的關(guān)系式求數(shù)列的通項(xiàng)公式,利用放縮法和裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,主要考察學(xué)生的應(yīng)用能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2 | B. | y=2x | C. | y=log2x | D. | y=sin2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 0 | 1 | 2 | 3 |
y | -1 | 1 | m | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
非重度污染 | 重度污染 | 合計(jì) | |
供暖季 | |||
非供暖季 | |||
合計(jì) | 100 |
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6-$\frac{1}{{3}^{10}}$ | B. | 6-$\frac{1}{{3}^{9}}$ | C. | 11-$\frac{1}{{3}^{10}}$ | D. | 11-$\frac{1}{{3}^{9}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 16 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com