分析 由條件利用同角三角函數(shù)的基本關系求得sinα、cosβ的值,再利用兩角差的余弦公式求得cos(α-β) 的值,可得α-β的值.
解答 解:∵已知α為鈍角,β為銳角,滿足cosα=-$\frac{2\sqrt{5}}{5}$,sinβ=$\frac{\sqrt{10}}{10}$,
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{\sqrt{5}}{5}$,cosβ=$\sqrt{{1-sin}^{2}β}$=$\frac{3\sqrt{10}}{10}$,
則cos(α-β)=cosα•cosβ+sinα•sinβ=-$\frac{2\sqrt{5}}{5}$•$\frac{3\sqrt{10}}{10}$+$\frac{\sqrt{5}}{5}$•$\frac{\sqrt{10}}{10}$=-$\frac{\sqrt{2}}{2}$.
再根據(jù) α-β∈(0,π),可得α-β=$\frac{3π}{4}$,
故答案為:$\frac{3π}{4}$.
點評 本題主要考查同角三角函數(shù)的基本關系,兩角差的余弦公式的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(3)<f(-4)<f(-π) | B. | f(-π)<f(-4)<f(3) | C. | f(-4)<f(-π)<f(3) | D. | f(3)<f(-π)<f(-4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p真q假 | B. | p∧q為真 | C. | p∨q為假 | D. | p假q真 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | i<10? | B. | i≤10? | C. | i<11? | D. | i≤11? |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com