分析 根據(jù)奇函數(shù)的定義,可判斷①;求出函數(shù)的周期,可判斷②;判斷方程根的個數(shù),可判斷③,根據(jù)函數(shù)的凸凹性,可判斷④
解答 解:①若函數(shù)f(x)=lg(x+$\sqrt{{x}^{2}+a}$)為奇函數(shù),
則f(0)=lg$\sqrt{a}$=0,解得:a=1;
當(dāng)a=1時,函數(shù)f(x)=lg(x+$\sqrt{{x}^{2}+1}$)滿足f(-x)=-f(x),故正確;
②函數(shù)f(x)=|sinx|的周期T=π,故正確;
③方程lgx=sinx有且只有三個實(shí)數(shù)根,故正確;
④對于函數(shù)f(x)=$\sqrt{x}$,若0<x1<x2,則f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$.故錯誤;
故答案為:①②③
點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了函數(shù)的圖象和性質(zhì),難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30+2$\sqrt{26}$ | B. | 30+4$\sqrt{26}$ | C. | 30+2$\sqrt{13}$ | D. | 30+4$\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-4)<f(0)<f(4) | B. | f(0)<f(-4)<f(4) | C. | f(0)<f(4)<f(-4) | D. | f(4)<f(0)<f(-4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com