12.設(shè)F1、F2是雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的左、右焦點(diǎn),P是雙曲線右支上一點(diǎn),滿足($\overrightarrow{OP}+\overrightarrow{O{F}_{2}}$)$•\overrightarrow{P{F}_{2}}$=0(O為坐標(biāo)原點(diǎn)),且3|$\overrightarrow{P{F}_{1}}$|=4|$\overrightarrow{P{F}_{2}}$|,則雙曲線的離心率為5.

分析 運(yùn)用雙曲線的定義,結(jié)合條件可得|PF1|=8a,|PF2|=6a,再由($\overrightarrow{OP}+\overrightarrow{O{F}_{2}}$)$•\overrightarrow{P{F}_{2}}$=0,可得|OP|=|OF2|,得到∠F1PF2=90°,由勾股定理及離心率公式,計算即可得到.

解答 解:由于點(diǎn)P在雙曲線的右支上,
則由雙曲線的定義可得|PF1|-|PF2|=2a,
又|PF1|=$\frac{4}{3}$|PF2|,
解得|PF1|=8a,|PF2|=6a,
由($\overrightarrow{OP}+\overrightarrow{O{F}_{2}}$)$•\overrightarrow{P{F}_{2}}$=0,
即為($\overrightarrow{OP}+\overrightarrow{O{F}_{2}}$)•($\overrightarrow{O{F}_{2}}$-$\overrightarrow{OP}$)=0,
即有$\overrightarrow{OP}$2=$\overrightarrow{O{F}_{2}}$2
則△PF1F2中,|OP|=|OF2|=|OF1|,
則∠F1PF2=90°,
由勾股定理得|PF1|2+|PF2|2=|F1F2|2,
即有64a2+36a2=4c2,
即有c=5a,
即e=$\frac{c}{a}$=5.
故答案為:5

點(diǎn)評 本題考查雙曲線的定義、方程和性質(zhì),考查雙曲線的離心率的求法,同時考查向量垂直的條件和勾股定理的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線y2=2px(p>0)上一點(diǎn)P(3,t)到其焦點(diǎn)的距離為4.
(1)求p的值;
(2)過點(diǎn)Q(1,0)作兩條直線l1,l2與拋物線分別交于點(diǎn)A、B和C、D,點(diǎn)M,N分別是線段AB和CD的中點(diǎn),設(shè)直線l1,l2的斜率分別為k1,k2,若k1+k2=3,求證:直線MN過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$.A為橢圓C上一動點(diǎn)(A異于左、右頂點(diǎn)),F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn),且△AF1F2面積的最大值為1;
(Ⅰ)求橢圓C的方程
(Ⅱ)如圖,已知點(diǎn)P(2,0),連接AP交橢圓C于點(diǎn)M,連接AF1、MF1并延長分別交橢圓C于點(diǎn)B、N,記$\overrightarrow{A{F}_{1}}$=λ$\overrightarrow{{F}_{1}B}$,$\overrightarrow{M{F}_{1}}$=μ$\overrightarrow{{F}_{1}N}$(λ、μ∈R),求λ+μ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知正實(shí)數(shù)x,y滿足xy=3,則2x+y的最小值是2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞增,且f(a+1)>f(a-1),則示數(shù)a的取值范圍是( 。
A.(0,+∞)B.[0,+∞)C.(-∞,0)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ln(x+a)+$\frac{2}{x}$,g(x)=lnx.
(1)已知f(x)在[e,+∞)上是單調(diào)函數(shù),求a的取值范圍;
(2)已知m,n,ξ滿足n>ξ>m>0,且g'(ξ)=$\frac{g(n)-g(m)}{n-m}$,試比較ξ與$\sqrt{mn}$的大。
(3)已知a=2,是否存在正數(shù)k,使得關(guān)于x的方程f(x)=kg(x)在[e,+∞)上有兩個不相等的實(shí)數(shù)根?如果存在,求k滿足的條件;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,函數(shù)f(x)=$\sqrt{3}$sinx-cosx,若f(2A)=f(2B),且A≠B.
(1)求∠C的大;
(2)若△ABC的面積為$\frac{\sqrt{3}}{8}$,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2msinx-2cos2x+0.5m2-4m+3且函數(shù)f(x)的最小值為19,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}滿足a1=2,an+1=$\frac{2(n+2)}{n+1}$an(n∈N*
(I)求{an}的通項(xiàng)公式;
(II)設(shè){an}的前n項(xiàng)和為Sn,證明:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$≤$\frac{n}{n+1}$.

查看答案和解析>>

同步練習(xí)冊答案