20.已知圓C的圓心在x軸上,并且過點A(-1,1)和B(1,3),則圓的方程是(x-2)2+y2=10.

分析 設(shè)圓心為M(a,0),由|MA|=|MB|求得a的值,可得圓心坐標(biāo)以及半徑的值,從而求得圓的方程.

解答 解:∵圓C的圓心在x軸上,設(shè)圓心為M(a,0),由圓過點A(-1,1)和B(1,3),
由|MA|=|MB|可得 MA2=MB2,即(a+1)2+1=(a-1)2+9,求得a=2,
可得圓心為M( 2,0),半徑為|MA|=$\sqrt{{3}^{2}+1}$=$\sqrt{10}$,故圓的方程為 (x-2)2+y2=10,
故答案為:(x-2)2+y2=10.

點評 本題主要考查求圓的標(biāo)準(zhǔn)方程,求出圓心的坐標(biāo),是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.觀察下列等式
12=1
12-22=-3
12-22+32=6
12-22+32-42=-10

照此規(guī)律,12-22+32-42+…+(2n-1)2-(2n)2=(-1)n+1(2n2+n)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.作出下列函數(shù)圖象.
(1)y=x2-2x+3,x∈(-1,3];
(2)$y=\frac{|x|-1}{{|{x^2}-1|}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為了得到函數(shù)$y=\frac{1}{2}sin(2x+\frac{π}{3})$的圖象,可以把函數(shù)$y=\frac{1}{2}sin2x$的圖象上所有的點(  )
A.向右平移$\frac{π}{3}$個單位B.向左平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{3}$個單位D.向右平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面直角坐標(biāo)系xOy,已知平面區(qū)域A={(x,y)|x+y≤2,x≥0,y≥0},則平面區(qū)域B={(x+y,x-y)|(x,y)∈A}的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)α,β是方程x2-2mx+2-m=0(x∈R)的兩個實根,則α22的最小值為( 。
A.2B.0C.16D.-$\frac{17}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow$=(cosx,2cosx),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow+m(m∈R)$,且當(dāng)x∈[0,$\frac{π}{2}$]時,f(x)的最小值為2.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)先將函數(shù)y=f(x)的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的$\frac{1}{2}$,再把所得的圖象向右平移$\frac{π}{12}$個單位,得到函數(shù)y=g(x)的圖象,求方程g(x)=4在區(qū)間[0,$\frac{π}{2}$]上所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四邊形ABCD是平行四邊形,點E在邊BA的延長線上,CE交AD于點F,∠ECA=∠D,求證:AC•BE=CE•AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在空間直角坐標(biāo)系中,以A(m,1,9),B(10,-1,6),C(2,4,3)為頂點的三角形是等腰三角形,其中m∈Z,則m的值為( 。
A.-4B.4C.-6或4D.6或4

查看答案和解析>>

同步練習(xí)冊答案