A. | -4 | B. | 4 | C. | -6或4 | D. | 6或4 |
分析 根據(jù)△ABC是等腰三角形,得到兩條腰的長(zhǎng)度相等,根據(jù)兩點(diǎn)之間的距離公式寫出關(guān)于m的等式,解方程即可.
解答 解:如果點(diǎn)A(m,1,9),B(10,-1,6),C(2,4,3)為頂點(diǎn)的△ABC是以AB為底邊的等腰三角形,
∴|AC|=|BC|,
∴$\sqrt{({m-2)}^{2}+(1-4)^{2}+(9-3)^{2}}$=$\sqrt{{(10-2)}^{2}+{(-1-4)}^{2}+{(6-3)}^{2}}$,
∴53=(m-2)2,m∈Z,
∴方程無(wú)解.
如果點(diǎn)A(m,1,9),B(10,-1,6),C(2,4,3)為頂點(diǎn)的△ABC是以AC為底邊的等腰三角形,
∴|AB|=|BC|,
∴$\sqrt{{(m-10)}^{2}+{(1+1)}^{2}+{(9-6)}^{2}}$=$\sqrt{{(10-2)}^{2}+{(-1-4)}^{2}+{(6-3)}^{2}}$,
∴(m-10)2=85.
∵m∈Z,
方程無(wú)解.
如果點(diǎn)A(m,1,9),B(10,-1,6),C(2,4,3)為頂點(diǎn)的△ABC是以BC為底邊的等腰三角形,
∴|AB|=|AC|,
∴$\sqrt{{(m-10)}^{2}+{(1+1)}^{2}+{(9-6)}^{2}}$=$\sqrt{{(m-2)}^{2}+{(1-4)}^{2}+{(9-3)}^{2}}$,
∴(m-10)2=32+(m-2)2.解得m=4.
故選:B.
點(diǎn)評(píng) 本題考查空間中兩點(diǎn)之間的距離公式,本題是中檔題,考查分類討論思想的應(yīng)用,這種題目若出現(xiàn)就是一個(gè)送分題目,同學(xué)們?cè)诮忸}過(guò)程中認(rèn)真做出數(shù)字,就不會(huì)出錯(cuò).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com