15.在△ABC中,角A,B,C所對的邊分別是a,b,c.若a=3bsinC且cosA=3cosBcosC,則tanA的值為(  )
A.4B.-4C.-3D.3

分析 運用正弦定理,把邊化成角得到sinA=3sinBsinC,再與條件cosA=3cosBcosC相減,運用兩角和的余弦公式,再用誘導(dǎo)公式轉(zhuǎn)化為cosA,由同角公式,即可求出tanA.

解答 解:∵a=3bsinC,
由正弦定理得:sinA=3sinBsinC①,
又cosA=3cosBcosC②,
②-①得,cosA-sinA=3(cosBcosC-sinBsinC)
=3cos(B+C)=-3cosA,
∴sinA=4cosA,
∴tanA=$\frac{sinA}{cosA}$=4.
故選:A.

點評 本題主要考查解三角形中的正弦定理及應(yīng)用,同時考查兩角和差的余弦公式,誘導(dǎo)公式,以及同角三角函數(shù)的關(guān)系式,這些都是三角中的基本公式,務(wù)必要掌握,注意公式的逆用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)=ln$\frac{{e}^{x}-1}{x}$,數(shù)列{an}滿足a1=1,an+1=f(an).
(1)試求f(x)的單調(diào)區(qū)間;
(2)求證:數(shù)列{an}為遞減數(shù)列,且an>0恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過橢圓$\frac{y^2}{4}+{x^2}=1$的上焦點F2作一條斜率為-2的直線與橢圓交于A,B兩點,則|AB|=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.過正方體ABCD-A1B1C1D1的頂點A作直線,使與直線AD1所成的角為30°,且與平面C1D1C所成的角為60°,則這樣的直線的條數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.從高三年級隨機抽取200名學(xué)生,將他們的某次考試數(shù)學(xué)成績繪制成頻率分布直方圖.由圖中數(shù)據(jù)可知成績在[130,140)內(nèi)的學(xué)生人數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-2alnx,(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)方程f(x)=2ax有唯一解時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合A={(x,y)|y=3x-2},B={(x,y)|y=x}那么集合A∩B={(1,1)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等差數(shù)列的第5項a5=8,且a1+a2+a3=6,則d=( 。
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點P是△ABC的中位線EF上任意一點,且EF∥BC,實數(shù)x,y滿足$\overrightarrow{PA}+x\overrightarrow{PB}+y\overrightarrow{PC}=\overrightarrow 0$,設(shè)△ABC,△PBC,△PCA,△PAB的面積分別為S,S1,S2,S3,記$\frac{S_1}{S}={λ_1}$,$\frac{S_2}{S}={λ_2}$,$\frac{S_3}{S}={λ_3}$,則λ2•λ3取最大值時,3x+y的值為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

同步練習(xí)冊答案