11.A={y|y=x2-2x},B={x|y=-x2},求A∪B,A∩B.

分析 求出集合A,B,然后求解交集與并集.

解答 解:A={y|y=x2-2x}={y|y≥-1},B={x|y=-x2}=R,
A∪B=R,
A∩B={y|y≥-1},

點評 本題考查函數(shù)的值域,集合的交集與并集的運(yùn)算法則,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=-x2+4x-2.
(1)若x∈[0,5],求該函數(shù)的單調(diào)增區(qū)間和單調(diào)減區(qū)間;
(2)若x∈[0,3],求該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點P(x,y)滿足$\left\{\begin{array}{l}{x-1≤0}\\{2x+3y-5≤0}\\{4x+3y-1≥0}\end{array}\right.$,點Q(x,y)在圓(x+2)2+(y+2)2=1上,則|PQ|的最大值與最小值分別是6;$\frac{13}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)命題p:實數(shù)x滿足|x-1|≤m,其中m>0,命題q:-2<x≤10.
(1)若m=2且p∨q為真命題,求實數(shù)x的取值范圍;
(2)若¬q是¬p的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.f(x)=x2+ax滿足f(2-x)=f(x),則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)a∈R,f(x)=$\frac{a•{2}^{x}+a-2}{{2}^{x}+1}$(x∈R)是奇函數(shù).
(1)求實數(shù)a的值;
(2)解不等式5f(x-x2)+3<0;
(3)已知sin(x+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$sinx+$\frac{\sqrt{2}}{2}$cosx.若關(guān)于x的函數(shù)f(x)=f(sinx+cosx)+f(b-sinxcosx)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在銀行中存款10000元,假定年利率為3.00%,到期后連本帶息繼續(xù)存入銀行,請用直到型和當(dāng)型兩種語句設(shè)計程序,計算經(jīng)過多少年才會連本帶利翻一番.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={y|y=x${\;}^{\frac{1}{3}}$,-1≤x≤1},B={y|y=2-$\frac{1}{x}$,0<x≤1},則集合A∪B=( 。
A.(-∞,1]B.[-1,1]C.D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中點,F(xiàn)是C1D的中點,P是棱CC1所在直線上的動點.則下列四個命題:
①CD⊥PE  
②EF∥平面ABC1  
③V${\;}_{P-{A}_{1}D{D}_{1}}$=V${\;}_{{D}_{1}-ADE}$
④過P可做直線與正四棱柱的各個面都成等角.
其中正確命題個數(shù)有( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案