4.設(shè)a、b、c均為正數(shù),且a+b+c≤3,求證:$\frac{1}{1+a}$+$\frac{1}{1+b}$+$\frac{1}{1+c}$≥$\frac{3}{2}$.

分析 由基本不等式可得$\frac{1+a}{4}$+$\frac{1}{1+a}$≥1,$\frac{1+b}{4}$+$\frac{1}{1+b}$≥1,$\frac{1+c}{4}$+$\frac{1}{1+c}$≥1,運(yùn)用累加法和不等式的性質(zhì),即可得到要證的不等式.

解答 證明:由a、b、c均為正數(shù),且a+b+c≤3,
則$\frac{1+a}{4}$+$\frac{1}{1+a}$≥2$\sqrt{\frac{1+a}{4}•\frac{1}{1+a}}$=1,
同理可得$\frac{1+b}{4}$+$\frac{1}{1+b}$≥1,
$\frac{1+c}{4}$+$\frac{1}{1+c}$≥1,
相加可得,$\frac{1+a}{4}$+$\frac{1+b}{4}$+$\frac{1+c}{4}$+$\frac{1}{1+a}$+$\frac{1}{1+b}$+$\frac{1}{1+c}$≥3,
即有$\frac{1}{1+a}$+$\frac{1}{1+b}$+$\frac{1}{1+c}$≥3-$\frac{3}{4}$-$\frac{a+b+c}{4}$≥$\frac{9}{4}$-$\frac{3}{4}$=$\frac{3}{2}$.
當(dāng)且僅當(dāng)a=b=c=1,上式取得等號(hào).
則有原不等式成立.

點(diǎn)評(píng) 本題考查不等式的證明,主要考查基本不等式的運(yùn)用,運(yùn)用累加法和不等式的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{0,x<0}\\{1,x≥0}\end{array}\right.$,則f(f(x))=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列不等式中:
①tanα+$\frac{1}{tanα}$≥2(α>0);
②sinA+$\frac{1}{sinA}$≥2(∠A是三角形的內(nèi)角);
③2x+$\frac{1}{{2}^{x}}$≥2(x∈R);
④$\frac{1}{a-b}$+$\frac{1}{c-a}$>0(a>b>c).
在其條件下恒成立的是②③④(將成立的式子的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)x,y,z是不全為0的實(shí)數(shù),則$\frac{xy+yz+xz}{3{x}^{2}+3{y}^{2}+3{z}^{2}}$的最大值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)sinα+cosα=$\frac{\sqrt{3}}{3}$,求sin4α+cos4α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.要在一個(gè)半徑為R的半圓形鐵板中截取一塊面積最大的矩形ABCD,問應(yīng)如何截取,并求此矩形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的前n項(xiàng)和Sn=2n(n+1),則a5的值為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在(1-x)6的展開式中,含x4項(xiàng)的系數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)在給定區(qū)間M上,存在正數(shù)t,使得對(duì)于任意x∈M,有x+t∈M,且f(x+t)≥f(x),則稱f(x)為M上的t級(jí)類增函數(shù),則下列命題正確的是(  )
A.函數(shù)f(x)=$\frac{4}{x}$+x是(1,+∞)上的1級(jí)類增函數(shù)
B.函數(shù)f(x)=|log2(x-1)|是(1,+∞)上的1級(jí)類增函數(shù)
C.若函數(shù)f(x)=x2-3x為[1,+∞)上的t級(jí)類增函數(shù),則實(shí)數(shù)t的取值范圍為[1,+∞)
D.若函數(shù)f(x)=sinx+ax為[$\frac{π}{2}$,+∞)上的$\frac{π}{3}$級(jí)類增函數(shù),則實(shí)數(shù)a的取值范圍為[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案