分析 根據(jù)球被平面截得小圓的面積,求出小圓的半徑r,再根據(jù)球心到平面的距離結(jié)合球的截面圓性質(zhì),利用勾股定理算出球半徑R的值,最后根據(jù)球的表面積公式,可得球的表面積.
解答 解:∵平面截球所得的圓面面積為π,
∴截得小圓的半徑為r,滿足πr2=π,得r=1,
∵該平面與球心的距離d=$\sqrt{2}$,
∴球半徑R=$\sqrt{1+2}$=$\sqrt{3}$
根據(jù)球的表面積公式,得S=4πR2=12π
故答案為:12π.
點(diǎn)評(píng) 本題給出球小圓面積,并且已知小圓所在平面到球心距離的情況下求球表面積,著重考查了球的截面圓性質(zhì)和球表面積公式等知識(shí),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 28+4$\sqrt{5}$ | B. | 24+2$\sqrt{5}$ | C. | 18+4$\sqrt{5}$ | D. | 18+2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com