精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若對一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求實數m的取值范圍.

【答案】
(1)解:由g(x)=2x2﹣4x﹣16<0,得x2﹣2x﹣8<0,

即(x+2)(x﹣4)<0,解得﹣2<x<4.

所以不等式g(x)<0的解集為{x|﹣2<x<4}


(2)解:因為f(x)=x2﹣2x﹣8,

當x>2時,f(x)≥(m+2)x﹣m﹣15成立,

則x2﹣2x﹣8≥(m+2)x﹣m﹣15成立,

即x2﹣4x+7≥m(x﹣1).

所以對一切x>2,均有不等式 成立.

(當x=3時等號成立).

所以實數m的取值范圍是(﹣∞,2]


【解析】(1)直接因式分解后求解不等式的解集;(2)把函數f(x)的解析式代入f(x)≥(m+2)x﹣m﹣15,分離變量m后利用基本不等式求解m的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合.若曲線的參數方程為為參數),直線的極坐標方程為.

(1)將曲線的參數方程化為極坐標方程;

(2)由直線上一點向曲線引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知單調遞增的等比數列滿足,且 的等差中項.

(Ⅰ)求數列的通項公式;

(Ⅱ)若數列滿足,求數列的通項公式;

(Ⅲ)在(Ⅱ)的條件下,設,問是否存在實數使得數列)是單調遞增數列?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若是函數的一個極值點, 和1是的兩個零點,且,求的值;

(2)若,且的兩個極值點,求證:當時, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設點Pi(xi , yi)在直線li:aix+biy=ci上,若ai+bi=ici(i=1,2),且|P1P2|≥ 恒成立,則 + =

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種產品的廣告費支出x與銷售額(單位:百萬元)之間有如下對應數據:
如果y與x之間具有線性相關關系.

(1)作出這些數據的散點圖;
(2)求這些數據的線性回歸方程;
(3)預測當廣告費支出為9百萬元時的銷售額.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某算法的流程圖如圖所示,運行相應程序,輸出S的值是(

A.60
B.61
C.62
D.63

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校在2014年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如下表所示.

組號

分組

頻數

頻率

第1組

[160,165)

5

0.050

第2組

[165,170)

n

0.350

第3組

[170,175)

30

p

第4組

[175,180)

20

0.200

第5組

[180,185]

10

0.100

合計

100

1.000


(1)求頻率分布表中n,p的值,并補充完整相應的頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學生進入第二輪面試,則第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定從6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有1名學生被甲考官面試的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=3ax2+2bx+c,且有a+b+c=0,f(0)>0,f(1)>0.
(Ⅰ)求證:a>0,且﹣2< <﹣1;
(Ⅱ)求證:函數y=f(x)在區(qū)間(0,1)內有兩個不同的零點.

查看答案和解析>>

同步練習冊答案