10.如圖:在△ABC中,D為AB邊上一點(diǎn),DA=DC,已知∠B=$\frac{π}{4}$,BC=3
(1)若△BCD為銳角三角形,DC=$\sqrt{6}$,求角A的大。
(2)若△BCD的面積為$\frac{3}{2}$,求邊AB的長(zhǎng).

分析 (1)由已知及正弦定理可求$sin∠CDB=\frac{{\sqrt{3}}}{2}$,結(jié)合△BCD為銳角三角形,可求∠CDB,進(jìn)而可求∠ADC的值,又DA=DC,利用等腰三角形的性質(zhì)即可得解∠A的值.
(2)利用三角形面積公式可求BD的值,利用余弦定理可求得CD的值,進(jìn)而可求AB=CD+BD的值.

解答 (本題滿分為12分)
解:(1)因?yàn)椋涸凇鰾CD中,由正弦定理得$\frac{BC}{sin∠CDB}=\frac{CD}{{sin{{45}^0}}}$,
所以:$sin∠CDB=\frac{{\sqrt{3}}}{2}$,
又因?yàn)椋骸鰾CD為銳角三角形,
所以:∠CDB=60°,
所以:∠ADC=120°,DA=DC,
所以:∠A=∠ACD=30°,∠A=30°.…(5分)
(2)因?yàn)椋?{S_{△BCD}}=\frac{3}{2}$,
所以:$\frac{1}{2}×BD×BCsin{45^0}=\frac{3}{2}$,
所以:$BD=\sqrt{2}$,
在△BCD中由余弦定理得:CD2=BD2+BC2-2BD×BCcos∠B=2+9-6=5,
所以:$CD=\sqrt{5}$,
所以:$AB=AD+BD=CD+BD=\sqrt{5}+\sqrt{2}$.…(12分)

點(diǎn)評(píng) 本題主要考查了正弦定理,等腰三角形的性質(zhì),三角形面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為直角梯形,∠ABC=∠DAB=$\frac{π}{2}$,AB=2$\sqrt{3}$,BC=2,AD=3,平面ABD1與棱CC1交于點(diǎn)P.
(Ⅰ)求證:BP∥AD1;
(Ⅱ)若直線A1P與平面BDP所成角的正弦值為$\frac{3\sqrt{10}}{10}$,求AA1的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{15}}{4}$,F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上任意一點(diǎn),且△PF1F2的周長(zhǎng)是8+2$\sqrt{15}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)圓T:(x-2)2+y2=$\frac{4}{9}$,過(guò)橢圓的上頂點(diǎn)M作圓T的兩條切線交橢圓于E、F兩點(diǎn),求直線EF的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知實(shí)數(shù)m>1,定點(diǎn)A(-m,0),B(m,0),S為一動(dòng)點(diǎn),點(diǎn)S與A,B兩點(diǎn)連線的斜率之積為-$\frac{1}{m^2}$.
(Ⅰ)求動(dòng)點(diǎn)S的軌跡C的方程,并指出它是哪一種曲線;
(Ⅱ)當(dāng)m=$\sqrt{2}$時(shí),問(wèn)t取何值時(shí),直線l:2x-y+t=0(t>0)與曲線C有且僅有一個(gè)交點(diǎn)?
(Ⅲ)在(Ⅱ)的條件下,證明:直線l上橫坐標(biāo)小于2的點(diǎn)P到點(diǎn)(1,0)的距離與到直線x=2的距離之比的最小值等于曲線C的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若變量x,y滿足條件$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}\right.$,且z=2x+y的最小值為-6,則k=( 。
A.3B.-3C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,若輸入K=5,則輸出的S是(  )
A.18B.50C.78D.306

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.過(guò)點(diǎn)P(-2,1)引拋物線y2=4x的兩條切線,切點(diǎn)分別為A,B,F(xiàn)是拋物線y2=4x的焦點(diǎn),則直線PF與直線AB的斜率之和為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖所示的程序,若輸入的x=3,則輸出的所有x的值的和為( 。
A.243B.363C.729D.1092

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=2tan(2x+$\frac{π}{6}$)的最小正周期是( 。
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案