12.已知函數(shù)f(x)=cos2x+cos2x,求
(1)周期;
(2)當(dāng)x∈[$\frac{π}{6}$,$\frac{2π}{3}$],求值域.

分析 (1)求出f(x)=$\frac{3}{2}$cos2x+$\frac{1}{2}$,從而求出周期T的值;(2)根據(jù)x的范圍,求出f(x)的值域即可.

解答 解:(1)f(x)=cos2x+cos2x
=cos2x+$\frac{1+cos2x}{2}$
=$\frac{3}{2}$cos2x+$\frac{1}{2}$,
∴T=$\frac{2π}{2}$=π;
(2)x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時(shí),2x∈[$\frac{π}{3}$,$\frac{4π}{3}$],
顯然2x=π,f(x)最小,最小值是-1,
2x=$\frac{π}{3}$或$\frac{4π}{3}$時(shí),f(x)最大,最大值是$\frac{5}{4}$,
故f(x)的值域是[-1,$\frac{5}{4}$].

點(diǎn)評 本題考查了求函數(shù)的周期問題,考查函數(shù)的值域問題,熟練掌握三角函數(shù)的性質(zhì)是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{80}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖所示,終邊落在陰影區(qū)域部分(含邊界)的角的集合是{α|120°+k•360°≤α≤210°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$分別是平面直角坐標(biāo)系中Ox、Oy正方向上的單位向量,$\overrightarrow{OA}$=2$\overrightarrow{{e}_{1}}$+m$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=n$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{OC}$=5$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$.若點(diǎn)A、B、C在同一條直線上,且m=2n,則實(shí)數(shù)m,n的值為-1,-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,S為△ABC的面積,a,b,c為∠A,∠B,∠C的對邊,S=$\frac{1}{4}$(b2+c2),則∠B=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,設(shè)D為BC的中點(diǎn),則3$\overrightarrow{AB}$+2$\overrightarrow{BC}$+$\overrightarrow{CA}$=(  )
A.$\overrightarrow{AD}$B.2$\overrightarrow{AD}$C.3$\overrightarrow{AD}$D.4$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.用0,1,2,3,4,5這六個(gè)數(shù)可以組成多少個(gè)無重復(fù)數(shù)字且個(gè)位上的數(shù)不是5的六位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}中,an>0,且a1=3,$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$+1(n∈N+),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知正整數(shù)a,b,c滿足a<b<c,若函數(shù)φ(x)=|x-a|+|x-b|+|x-c|的圖象與函數(shù)y=-2x+2015的圖象有且僅有一個(gè)公共點(diǎn),則正整數(shù)c的最小值是1008.

查看答案和解析>>

同步練習(xí)冊答案