分析 (Ⅰ)利用兩角和差的余弦公式結(jié)合輔助角公式將函數(shù)進(jìn)行化簡(jiǎn),利用條件建立方程關(guān)系求出a和ω即可求f(x)的解析式;
(Ⅱ)若f(α)=$\frac{4}{3}$,利用三角函數(shù)的誘導(dǎo)公式以及倍角公式即可求sin(4α-$\frac{π}{6}$)的值.
解答 解:(Ⅰ)∵數(shù)f(x)=4cosωx•sin(ωx+$\frac{π}{6}$)+a=4cosωx•($\frac{\sqrt{3}}{2}$sinωx+$\frac{1}{2}$cosωx)+a
=2$\sqrt{3}$cosωxsinωx+2cos2ωx+a=$\sqrt{3}$sin2ωx+cos2ωx+a+1=2sin(2ωx+$\frac{π}{6}$)+a+1,
當(dāng)x=0時(shí),f(0)=1+a+1=a+2=1,即a=-1,
∵圖象上相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
∴函數(shù)的周期T=$\frac{π}{2}$×2=π,即$\frac{2π}{2ω}=π$,
解得ω=1,
即f(x)的解析式為f(x)=2sin(2x+$\frac{π}{6}$);
(Ⅱ)若f(α)=$\frac{4}{3}$,則2sin(2α+$\frac{π}{6}$)=$\frac{4}{3}$,即sin(2α+$\frac{π}{6}$)=$\frac{2}{3}$,
∴sin(4α-$\frac{π}{6}$)=sin[2(2α+$\frac{π}{6}$)-$\frac{π}{2}$]=-cos2(2α+$\frac{π}{6}$)=-1+2sin2(2α+$\frac{π}{6}$)=-1+2×$(\frac{2}{3})^{2}$=-1+$\frac{8}{9}$=-$\frac{1}{9}$.
點(diǎn)評(píng) 本題主要考查三角函數(shù)解析式的求解以及三角函數(shù)值的化簡(jiǎn)和求值,利用三角函數(shù)的性質(zhì)結(jié)合三角函數(shù)的輔助角公式是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{1}{3}$ | D. | -$\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{41}{4}$ | B. | -$\frac{41}{4}$ | C. | $\frac{9}{4}$ | D. | -$\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com