3.求函數(shù)y=2tan$\frac{x}{3}$的定義域.

分析 由$\frac{x}{3}$的終邊不在y軸上,可得$\frac{x}{3}≠\frac{π}{2}+kπ,k∈Z$,求出x的范圍得答案.

解答 解:由$\frac{x}{3}≠\frac{π}{2}+kπ,k∈Z$,得$x≠\frac{3}{2}π+3kπ,k∈Z$.
∴函數(shù)y=2tan$\frac{x}{3}$的定義域為{x|$x≠\frac{3}{2}π+3kπ,k∈Z$}.

點評 本題考查正切函數(shù)的定義域,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.若集合A={x|y=lnx},B={x|x2-x>0},則A∩B=( 。
A.[0,1]B.(-∞,0)C.(1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)=|{x-a}|+|{x-\frac{1}{2}}|,x∈R$
(Ⅰ)當$a=\frac{5}{2}$時,解不等式f(x)≤x+10;
(Ⅱ)關于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知點A為橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點,P($\frac{8}{3}$,$\frac{3}$)是橢圓E上的一點,以AP為直徑的圓經(jīng)過橢圓E的右焦點F,直線l與橢圓相交于B、C兩點,且滿足kOB•kOC=-$\frac{1}{2}$,O為坐標原點
(1)求橢圓E的方程;
(2)求證:△OBC的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,M是AB的中點,N是AC上一點,且$\overrightarrow{NC}$=2$\overrightarrow{AN}$,BN與CM相交于一點P.$\overrightarrow{AP}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$,則λ+μ=( 。
A.1B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知tanα=3,則sinαsin($\frac{3π}{2}$-α)的值是-$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設點A1、A2分別為橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的下頂點和上頂點,若在橢圓上存在點P使得${k}_{P{A}_{1}}$•${k}_{P{A}_{2}}$>-3,則橢圓C的離心率的取值范圍是( 。
A.($\frac{\sqrt{6}}{3}$,1)B.(0,$\frac{\sqrt{6}}{3}$)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.四對夫婦坐成一排照相:
(1)每對夫婦都不能隔開的排法有多少種?
(2)每對夫婦不能隔開,且同性別的人不能相鄰的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=|x|,g(x)=-|x-a|+m.
(1)解關于x的不等式g[f(x)]+2-m>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案