13.復(fù)數(shù)z滿(mǎn)足i•z=1+i,其中i為虛數(shù)單位,則在復(fù)平面上復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:∵i•z=1+i,∴-i•i•z=-i(1+i),
∴z=1-i,
∴在復(fù)平面上復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)(1,-1)位于第四象限.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{sinx}{{e}^{x}}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果對(duì)于任意的x∈[-$\frac{π}{2}$,0],f(x)≤kx恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.用斜二測(cè)畫(huà)法畫(huà)一個(gè)水平放置的平面圖形的直觀(guān)圖為如圖所示的一個(gè)邊長(zhǎng)為1的正方形,則原來(lái)的圖形的面積是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.四棱錐S-ABCD中,底面ABCD是邊長(zhǎng)為2$\sqrt{3}$的正方形,SA⊥平面ABCD,且SA=2$\sqrt{6}$,則此四棱錐的外接球的表面積為(  )
A.12πB.24πC.144πD.48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,C是圓O的直徑AB上一點(diǎn),CD⊥AB,與圓O相交于點(diǎn)D,與弦AF交于點(diǎn)E,與BF的延長(zhǎng)線(xiàn)相交于點(diǎn)G.GT與圓相切于點(diǎn)T.
(I)證明:CD2=CE•CG;
(Ⅱ)若AC=CO=1,CD=3CE,求GT.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線(xiàn)畫(huà)出的是某多面體的三視圖,則該多面體的各條棱中,最長(zhǎng)的棱的長(zhǎng)度為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.“已知關(guān)于x的不等式ax2+bx+c>0的解集為(1,2),解關(guān)于x的不等式cx2+bx+a>0.”給出如下的一種解法:
解:由ax2+bx+c>0的解集為(1,2),得$a{({\frac{1}{x}})^2}+b({\frac{1}{x}})+c>0$的解集為$(\frac{1}{2},1)$,即關(guān)于x的不等式cx2+bx+a>0的解集為$(\frac{1}{2},1)$.
參考上述解法:若關(guān)于x的不等式$\frac{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-1,-$\frac{1}{3}$)∪($\frac{1}{2}$,1),則關(guān)于x的不等式$\frac{x-a}$-$\frac{x-b}{x-c}$>0的解集為(-1,$-\frac{1}{2}$)$∪(\frac{1}{3},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.定義在R上的奇函數(shù)f(x)滿(mǎn)足:當(dāng)x>0時(shí),f(x)=-log2x,則f(-$\frac{1}{4}$)=-2;使f(x)<0的x的取值范圍是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.命題p:已知α⊥β,則?l?α,都有l(wèi)⊥β;命題q:已知l∥α,則?m?α,使得l不平行于m(其中α、β是平面,l、m是直線(xiàn)),則下列命題中真命題的是( 。
A.(¬p)∧(¬q)B.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

同步練習(xí)冊(cè)答案