4.已知m∈R,則函數(shù)f(x)=3x+m-2有零點(diǎn)的一個(gè)充分不必要條件為( 。
A.0<m<1B.m<2C.m<3D.0<m<3

分析 先求出函數(shù)f(x)=3x+m-2有零點(diǎn)的充分必要條件,結(jié)合集合的包含關(guān)系判斷即可.

解答 解:若函數(shù)f(x)=3x+m-2=0有零點(diǎn),
則m-2<0,解得:m<2,
m<2的一個(gè)充分不必要條件為:0<m<1,
故選:A.

點(diǎn)評(píng) 本題考察了充分必要條件,考察函數(shù)的零點(diǎn)問題,考察指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若函數(shù)y=f(x)在x=a處的導(dǎo)數(shù)為A,則$\underset{lim}{△x→0}$$\frac{f(a+△x)-f(a-△x)}{△x}$為( 。
A.AB.2AC.$\frac{A}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖是某圓拱橋的示意圖,這個(gè)圓拱橋的水面跨度AB=24m,拱高OP=8m.問:為使寬為10m的船能從橋下順利通過,應(yīng)如何限制船體及裝載的貨物在水面以上的高度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)y=f(x)(x∈R)滿足f(x+4)=f(x),且當(dāng)x∈[0,4]時(shí),f(x)=1-$\frac{1}{2}$|x-2|,那么函數(shù)f(x)的圖象與函數(shù)g(x)=$\left\{\begin{array}{l}{lg|x|,x<0}\\{|lgx|,x>0}\end{array}\right.$的圖象的交點(diǎn)個(gè)數(shù)共有( 。
A.12B.11C.10D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.當(dāng)x=$\frac{π}{4}$時(shí),函數(shù)f(x)=sin(x+φ)取得最小值,則函數(shù)y=f($\frac{3π}{4}$-x)的一個(gè)單調(diào)遞增區(qū)間是( 。
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義:離心率e=$\frac{\sqrt{5}-1}{2}$的橢圓為“黃金橢圓”,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),e為橢圓E的離心率,則e2+e-1=0是橢圓E為“黃金橢圓”的(  )
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合M={$\frac{1}{2}$,1,2,3,4},N={y|y=log2x,x∈M},則M∩N是( 。
A.{1,2}B.{1,4}C.{1}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列各表格中,不能看成y關(guān)于x的函數(shù)的是(  )
A.
 x 1 2 3
 y 2 4 6
B.
 x 1 2 3
 y 2 2 6
C.
 x 1 1 3
 y 2 4 6
D.
 1 2 
 y 2 4 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.橢圓$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1的焦點(diǎn)坐標(biāo)是( 。
A.(0,±$\sqrt{5}$)B.(±$\sqrt{5}$,0)C.(0,±$\sqrt{13}$)D.(±$\sqrt{13}$,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案