16.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M是AC的中點(diǎn),∠CAD=30°,AB=2,點(diǎn)N在線段PB上,且$\frac{PN}{NB}=\frac{1}{3}$.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC.

分析 (1)證明BD⊥AC,PA⊥BD,得出BD⊥平面PAC,從而證明BD⊥PC;
(2)根據(jù)$\frac{DM}{MB}$=$\frac{PN}{NB}$,證明MN∥PD,即可證明MN∥平面PDC.

解答 解:(1)證明:因?yàn)椤鰽BC是正三角形,M是AC的中點(diǎn),
所以BM⊥AC,即BD⊥AC,
又因?yàn)镻A⊥平面ABCD,
BD?平面ABCD,
所以PA⊥BD,
又PA∩AC=A,
所以BD⊥平面PAC;
又PC?平面PAC,
所以BD⊥PC;
(2)證明:在正三角形ABC中,AB=2,BM=$\frac{\sqrt{3}}{2}$AB=$\sqrt{3}$;
由(1)知,在直角三角形AMD中,MD=AMtan30°=$\frac{\sqrt{3}}{3}$,
所以$\frac{DM}{MB}$=$\frac{1}{3}$;
又因?yàn)?\frac{PN}{NB}$=$\frac{1}{3}$,
所以$\frac{DM}{MB}$=$\frac{PN}{NB}$,
∴MN∥PD;
因?yàn)镸N?平面PDC,PD?平面PDC,
所以MN∥平面PDC.

點(diǎn)評(píng) 本題考查了空間中的平行與垂直關(guān)系的應(yīng)用問(wèn)題,解題時(shí)應(yīng)熟練地掌握空間值的平行與垂直關(guān)系的判斷與性質(zhì),是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.下列說(shuō)法正確的是③(填序號(hào)).
①有一個(gè)面是多邊形,其余各面都是三角形,由這些面所圍成的幾何體是棱錐;
②用一個(gè)平面去截棱錐,底面與截面之間部分所圍成的幾何體叫做棱臺(tái);
③三棱錐的任何一個(gè)面都可看作底面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,PA與圓O相切于A,不過(guò)圓心O的割線PCB與直徑AE相交于D點(diǎn).已知∠BPA=30°,AD=2,PC=1,則圓O的半徑等于7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知數(shù)列{an}滿足a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N+),則a1+a2+a3+…+a2015的值為$-\frac{1765}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+3,x>a}\\{{x}^{2}+6x+3,x≤a}\end{array}\right.$函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,3)B.[-3,-1]C.[-3,3)D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知g(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),g(x)=-ln(1-x),函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤0}\\{g(x),x>0}\end{array}\right.$,若f(2-x2)>f(x),則x的取值范圍是( 。
A.(-∞,-2)∪(1,+∞)B.(-∞,1)∪(2,+∞)C.(-2,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.x<2是x2-3x+2<0成立的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知直線m⊥平面a,直線n?平面β,則下列四個(gè)命題①若α∥β,則m⊥n②若α⊥β,則m∥n③若m∥n,則α⊥β④若m⊥n,則α∥β.其中真命題的序號(hào)是( 。
A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.用數(shù)學(xué)歸納法證明:x2n-1+y2n-1(n∈N+)能被x+y整除.

查看答案和解析>>

同步練習(xí)冊(cè)答案