A. | (-∞,-2)∪(1,+∞) | B. | (-∞,1)∪(2,+∞) | C. | (-2,1) | D. | (1,2) |
分析 根據(jù)奇函數(shù)定義得出當(dāng)x>0時(shí),g(x)=ln(1+x),求解得出函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤0}\\{ln(1+x),x>0}\end{array}\right.$,運(yùn)用單調(diào)性轉(zhuǎn)化不等式f(2-x2)>f(x),為2-x2>x,即可求解.
解答 解:∵g(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),g(x)=-ln(1-x),
∴當(dāng)x>0時(shí),-x<0,g(-x)=-ln(1+x),
即當(dāng)x>0時(shí),g(x)=ln(1+x),
∵函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤0}\\{g(x),x>0}\end{array}\right.$,
∴函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤0}\\{ln(1+x),x>0}\end{array}\right.$,
可判斷f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤0}\\{ln(1+x),x>0}\end{array}\right.$,在(-∞,+∞)單調(diào)遞增,
∵f(2-x2)>f(x),
∴2-x2>x,
解得:-2<x<1,
故選:C
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性,單調(diào)性在求解函數(shù)解析式,解不等式中的應(yīng)用,屬于中檔題,運(yùn)算難度不大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{5}$+2 | B. | 2$\sqrt{5}$ | C. | 4$\sqrt{2}$+2 | D. | 4$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {1,2} | C. | {0,1,2} | D. | ∅ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com