某大型企業(yè)人力資源部為了研究企業(yè)員工工作積極性和對待企業(yè)改革態(tài)度的關系,隨機抽取了180名員工進行調查,在被調查員工中有100名工作積極,80名工作一般,120名積極支持企業(yè)改革,60名不太贊成企業(yè)改革,工作積極的員工里有80%積極支持企業(yè)改革.
(1)作出2×2列聯(lián)表
積極支持企業(yè)改革 不太贊成企業(yè)改革 合計
工作積極
工作一般
合計
(2)對于人力資源部的研究項目進行分析,根據(jù)上述數(shù)據(jù)能否有99.9%的把握認為工作積極性與對待企業(yè)改革態(tài)度有關?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥K0 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
考點:獨立性檢驗的應用
專題:計算題,概率與統(tǒng)計
分析:(1)根據(jù)題設條件,得2×2列聯(lián)表;
(2)利用公式計算K2,再與臨界值比較可得結論.
解答: 解:(1)作出2×2列聯(lián)表
積極支持企業(yè)改革 不太贊成企業(yè)改革 合計
工作積極 80 20 100
工作一般 40 40 80
合計 120 60 180
(2)由2×2列聯(lián)表可得:K2=
180(80×40-20×40)2
120×60×100×80
=18          …(8分)
∵18>10.828,…(10分)
∴有99.9%的把握認為工作積極性與對待企業(yè)改革態(tài)度有關.…(12分)
點評:本題考查獨立性檢驗的意義、收集數(shù)據(jù)的方法,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(2x+
π
3
)(x∈R)的最小正周期為( 。
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinθ=
3
5
,且cosθ<0,則tanθ等于(  )
A、-
3
4
B、
3
4
C、-3
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡log2
4
5
+log25等于(  )
A、
29
10
B、
10
29
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=
1
4
,a2=
3
4
,an+1=2an-an-1(n≥2,n∈N*)數(shù)列{bn}滿足b1=
1
2
,3bn-bn-1=n(n≥2,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)證明:數(shù)列{bn-an}為等比數(shù)列,并求出數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:△ABC的三個內角A、B、C的對邊分別為a、b、c,且滿足cos2B-cos(A+C)=0.
(1)求角B的大小;
(2)若sinA=4sinC,△ABC的面積為
3
,求b邊的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列
1
1×4
,
1
4×7
,
1
7×10
,…,
1
(3n-2)(3n+1)
的前n項和為Sn
(1)計算S1,S2,S3,S4,根據(jù)計算結果,猜想Sn的表達式,并用數(shù)學歸納法進行證明;
(2)試用其它方法求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點(0,2),求它與曲線y=x3相切的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=x-lnx
(1)求y=f(x)的單調區(qū)間;
(2)若g(x)=x-alnx在[1,+∞)上單調遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案