【題目】已知復數z=,(m∈R,i是虛數單位).
(1)若z是純虛數,求m的值;
(2)設是z的共軛復數,復數+2z在復平面上對應的點在第一象限,求m的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1)化簡z=1-2m+(2m+1)i,若z是純虛數,只需1-2m=0且2m+1≠0即可;
(2)求得1-2m-(2m+1)i,得+2z=3-6m+(2m+1)i,只需即可.
試題解析:
(1)z==
=1-2m+(2m+1)i.
因為z是純虛數,所以1-2m=0且2m+1≠0,
解得m=.
(2)因為是z的共軛復數,所以=1-2m-(2m+1)i.
所以+2z=1-2m-(2m+1)i+2[1-2m+(2m+1)i]
=3-6m+(2m+1)i.
因為復數+2z在復平面上對應的點在第一象限,
所以
解得-<m<,即實數m的取值范圍為(-,).
點睛:形如的數叫復數,其中a叫做復數的實部,b叫做復數的虛部.
當時復數為實數,
當時復數為虛數,
當時復數為純虛數.
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右頂點是雙曲線的頂點,且橢圓的上頂點到雙曲線的漸近線的距離為 。
(1)求橢圓的方程;
(2)若直線與相交于兩點,與相交于兩點,且,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某專營店經銷某商品,當售價不高于10元時,每天能銷售100件,當價格高于10元時,每提高1元,銷量減少3件,若該專營店每日費用支出為500元,用x表示該商品定價,y表示該專營店一天的凈收入(除去每日的費用支出后的收入).
(1)把y表示成x的函數;
(2)試確定該商品定價為多少元時,一天的凈收入最高?并求出凈收入的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為(為參數),直線的參數方程為(為參數),且直線與曲線交于兩點,以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2) 已知點的極坐標為,求的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一年級學生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學生的測試成
績,整理數據并按分數段,,,,,進行分
組,已知測試分數均為整數,現(xiàn)用每組區(qū)間的中點值代替該組中的每個數據,則得到體育成績的折
線圖如下:
(1)若體育成績大于或等于70分的學生為“體育良好”,已知該校高一年級有1000名學生,試估計該校高一年級學生“體育良好”的人數;
(2)為分析學生平時的體育活動情況,現(xiàn)從體育成績在和的樣本學生中隨機抽取2人,求所抽取的2名學生中,至少有1人為“體育良好”的概率;
(3)假設甲、乙、丙三人的體育成績分別為,,,且,,
,當三人的體育成績方差最小時,寫出,,的值(不要求證明).
注:,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)求函數在區(qū)間上的值域
(2)把函數圖象所有點的上橫坐標縮短為原來的倍,再把所得的圖象向左平移個單位長度,再把所得的圖象向下平移1個單位長度,得到函數, 若函數關于點對稱
(i)求函數的解析式;
(ii)求函數單調遞增區(qū)間及對稱軸方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若,求曲線在點處的切線;
(2)若函數在其定義域內為增函數,求正實數的取值范圍;
(3)設函數,若在上至少存在一點,使得成立,求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com