7.$y=\frac{sinx}{x}$的導(dǎo)函數(shù)為${y^'}=\frac{xcosx-sinx}{x^2}$.

分析 根據(jù)題意,由函數(shù)的解析式,結(jié)合商的導(dǎo)數(shù)計(jì)算公式直接計(jì)算即可得答案.

解答 解:根據(jù)題意,$y=\frac{sinx}{x}$,
其導(dǎo)數(shù)y′=$\frac{(sinx)′x-(x)′cosx}{{x}^{2}}$=$\frac{xcosx-sinx}{{x}^{2}}$;
即${y^'}=\frac{xcosx-sinx}{x^2}$,
故答案為:${y^'}=\frac{xcosx-sinx}{x^2}$.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的計(jì)算,關(guān)鍵是掌握導(dǎo)數(shù)的計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.經(jīng)過(guò)直線l1:x+y-1=0與直線l2:2x-3y+8=0的交點(diǎn)M,且與直線2x+y+5=0平行的直線l的方程為2x+y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4)上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.a<-3B.a>-3C.a≤-3D.a≥-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.方程x2+2x-1=0的解可視為函數(shù)y=x+2的圖象與函數(shù)$y=\frac{1}{x}$的圖象交點(diǎn)的橫坐標(biāo),若方程x4+ax-4=0的各個(gè)實(shí)根x1,x2,…,xk(k≤4)所對(duì)應(yīng)的點(diǎn)$({x_i},\frac{4}{x_i})$(i=1,2,…,k)均在直線y=x的同側(cè),則實(shí)數(shù)a的取值范圍是(-∞,-6)∪(6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2ccosA+a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow$=(1,sin2x),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-1.
(Ⅰ)求函數(shù)f(x)的最小正周期以及單調(diào)遞增區(qū)間;
(Ⅱ)求方程f(x)=k,(0<k<2),在$[-\frac{π}{12},\frac{23π}{12}]$內(nèi)的所有實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an},{bn}中,a1=1,an+1-(n+1)an=0,${b_1}^3+{b_2}^3+…+{b_n}^3={({{b_1}+{b_2}+…+{b_n}})^2}$且bn>0,n∈N*.記n的階乘n(n-1)(n-2)…3•2•1=n!
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若${c_n}=\frac{b_n}{{a{\;}_{n+1}}}$,求證:${c_1}+{c_2}+…+{c_n}≥\frac{n}{n+1}{\;}_{\;}{\;}_{\;}(n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.若關(guān)于x的方程lg(x2+ax)=1在x∈[1,5]上有解,則實(shí)數(shù)a的取值范圍為[-3,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.“a<2”是“a2-2a<0”的( 。
A.充分非必要條件B.既不充分也不必要條件
C.充要條件D.必要非充分條件

查看答案和解析>>

同步練習(xí)冊(cè)答案