分析 設(shè)小正方形的邊長為x,可得盒子高h(yuǎn)=x,底邊長為a-2x,可得盒子容積V=x(a-2x)2,(0<x<$\frac{a}{2}$),再由三元基本不等式,a+b+c≥3$\root{3}{abc}$,即可得到所求最大值.
解答 解:設(shè)小正方形的邊長為x,
則盒子高h(yuǎn)=x,底邊長為a-2x,
得盒子容積V=x(a-2x)2,(0<x<$\frac{a}{2}$),
由V=$\frac{1}{4}$•4x•(a-2x)•(a-2x)≤$\frac{1}{4}$•($\frac{4x+a-2x+a-2x}{3}$)3
=$\frac{1}{4}$•$\frac{8{a}^{3}}{27}$=$\frac{2{a}^{3}}{27}$,
當(dāng)且僅當(dāng)4x=a-2x,即x=$\frac{a}{6}$∈(0,$\frac{a}{2}$),取得最大值.
故切去的正方形邊長是$\frac{a}{6}$時,才能使盒子的容積最大.
點(diǎn)評 本題考查函數(shù)模型問題的解法,注意運(yùn)用三元基本不等式求得最值,設(shè)出自變量求得函數(shù)的解析式是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{{\sqrt{7}}}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{{\sqrt{7}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1條 | B. | 2條 | C. | 3條 | D. | 0條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$(-$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$) | B. | $\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$) | C. | $\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow$+$\overrightarrow{c}$) | D. | $\frac{1}{2}$(-$\overrightarrow{a}$-$\overrightarrow$+$\overrightarrow{c}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com