18.已知集合A={-2,a},B={2a,b},若A∩B={1},則A∪B=( 。
A.{-2,1,3}B.{-2,1,2}C.{-2,1}D.{-2,1,5}

分析 由A∩B={1},可得1∈A且1∈B,進(jìn)而可得a=1,b=1,求出集合A,B后,根據(jù)集合并集運(yùn)算規(guī)則可得答案

解答 解:集合A={-2,a},B={2a,b},
又∵A∩B={1},
∴a=1,2a=2,則b=1
故A={-1,1},B={1,2}
∴A∪B={-2,1,2}
故選B.

點(diǎn)評(píng) 本題以集合交集及并集運(yùn)算為載體考查了集合關(guān)系中的參數(shù)取值問(wèn)題,解答是要注意集合元素的互異性

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.橢圓C1:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,過(guò)F2作直線交拋物線y2=2x于A、B兩點(diǎn),射線OA,OB分別交橢圓C1于點(diǎn)D、E,證明:$\frac{|OD||OE|}{|DE|}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知集合M={x|$\sqrt{x+1}$≥0},集合N={x|x2+x-2<0},則M∩N=[-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線c1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosα}\\{y=2+2sinα}\end{array}\right.$(α為參數(shù)),直線l的極坐標(biāo)方程為θ=$\frac{π}{4}$.
(1)求曲線c1與直線l的直角坐標(biāo)方程.
(2)若直線l與曲線c1交于兩點(diǎn)A、B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且$2{cos^2}\frac{A-B}{2}cosB-sin(A-B)sinB+cos(A+C)=-\frac{1}{2}$
(Ⅰ)求A;
(Ⅱ)D為邊BC上一點(diǎn),BD=3DC,∠DAB=$\frac{π}{2}$,求tanC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.從平行六面體的8個(gè)頂點(diǎn)中任取5個(gè)頂點(diǎn)為頂點(diǎn),恰好構(gòu)成四棱錐的概率為( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x||x+1≤2},B={x|y=lg(x2-x-2)},則A∩∁RB( 。
A.[-1,1]B.[-3,-1]C.(-1,1]D.[-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,bcosC+$\sqrt{3}$bsinC-a-c=0.
(Ⅰ)求∠B的值;
(Ⅱ)若b=$\sqrt{3}$,求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.橢圓滿足這樣的光學(xué)性質(zhì):從橢圓的一個(gè)交點(diǎn)發(fā)射的光線,經(jīng)橢圓反射后,反射光先經(jīng)過(guò)橢圓的另一個(gè)交點(diǎn),現(xiàn)設(shè)有一個(gè)水平放置的橢圓形臺(tái)球盤,滿足方程$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,點(diǎn)A和B是它們的兩個(gè)交點(diǎn),當(dāng)靜止的小球放在點(diǎn)A處,從點(diǎn)A沿直線出發(fā),經(jīng)橢圓壁反彈后,再回到點(diǎn)A時(shí),小球經(jīng)過(guò)的路程是2或18或20.

查看答案和解析>>

同步練習(xí)冊(cè)答案