分析 設(shè)直線方程為x=my+2,帶入拋物線方程為y2=2x,得y2--2my-4=0,聯(lián)立,根據(jù)條件列式,得出原點(diǎn)到直線DE的距離d=$\frac{|λ|}{\sqrt{1+{t}^{2}}}$=$\frac{\sqrt{6}}{2}$為定值,求解即可.
解答 證明:設(shè)過橢圓得F2(2,0)得直線方程為x=my+2,帶入拋物線方程為y2=2x,得y2-2my-4=0.
設(shè)A(x1,y1)B(x2,y2),則y1+y2=2m,y1y2=-4
∴x1x2+y1y2=(my1+2)(my2+2)+y1y2=(1+m2)y1y2+2m(y1+y2)+4=0
∴OA⊥OB
設(shè)D(x3,y3)、E(x4,y4),直線DE的方程為x=ty+λ,代入$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1得
(t2+3)y2+2tλy+λ2-6=0,于是y3+y4=-$\frac{2tλ}{{t}^{2}+3}$,y3y4=$\frac{{λ}^{2}-6}{{t}^{2}+3}$,
從而x3x4=$\frac{3{λ}^{2}-6{t}^{2}}{{t}^{2}+3}$,
∵OA⊥OB,∴OD⊥OE,∴x3x4+y3y4=0,
代入整理得2λ2=3(t2+1),過原點(diǎn)O作直線DE的垂線OM,垂足為M,
∴原點(diǎn)到直線DE的距離d=$\frac{|λ|}{\sqrt{1+{t}^{2}}}$=$\frac{\sqrt{6}}{2}$為定值,
∵△DOE為直角三角形,∴$\frac{1}{2}|OD||OE|=\frac{1}{2}|DE|d$,∴$\frac{|OD||OE|}{|DE|}$=$\frac{\sqrt{6}}{2}$為定值.
點(diǎn)評(píng) 本題主要考查了直線與圓錐曲線的綜合應(yīng)用,考查直線與拋物線的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (11,12) | B. | (12,13) | C. | (13,14) | D. | (13,12) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | ln2 | D. | ln$\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,1,3} | B. | {-2,1,2} | C. | {-2,1} | D. | {-2,1,5} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com