8.將函數(shù)y=cos(2x+φ)的圖象沿x軸向右平移$\frac{π}{6}$后,得到的圖象關(guān)于原點(diǎn)對(duì)稱,則φ的一個(gè)可能取值為( 。
A.-$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

分析 由條件根據(jù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對(duì)稱性,求得φ的值,可得結(jié)論.

解答 解:將函數(shù)y=cos(2x+φ)的圖象沿x軸向右平移$\frac{π}{6}$后,
得到的圖象對(duì)應(yīng)的解析式為y=cos[2(x-$\frac{π}{6}$)+φ]=cos(2x-$\frac{π}{3}$+φ).
再根據(jù)得到的圖象關(guān)于原點(diǎn)對(duì)稱,則-$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,k∈z,
即φ=kπ+$\frac{5π}{6}$,k∈z.
結(jié)合所給的選項(xiàng),
故選:D.

點(diǎn)評(píng) 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知a,b,c是實(shí)數(shù),則“a,b,c成等比數(shù)列”是“b2=ac”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}$(α為參數(shù))
(Ⅰ)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)$(2\sqrt{2},\frac{3π}{4})$,判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q為曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)函數(shù)f(x)=|2x-1|,實(shí)數(shù)a<b,且f(a)=f(b),則a+b的取值范圍是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù) f(x)=4$\sqrt{3}sinxcosx-4{sin^2}$x+1
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C所對(duì)邊分別為a,b,c,a=2,若對(duì)任意的x∈R不等式f(x)≤f(A)恒成立,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過(guò)點(diǎn)F的直線l1交拋物線C于A,B兩點(diǎn),且|AB|=8,線段AB的中點(diǎn)到y(tǒng)軸的距離為3.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若直線l2與圓x2+y2=$\frac{1}{2}$切于點(diǎn)P,與拋物線C切于點(diǎn)Q,求△FPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.以平面直角坐標(biāo)系xOy的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的圓心C的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$),半徑r=$\sqrt{2}$.直線y=$\sqrt{3}$x與圓C交于兩點(diǎn),求兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知實(shí)數(shù)x、y滿足不等式組$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{3x-y+1≥0}\end{array}\right.$,求z=2x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若a=sin(π-$\frac{π}{6}$),則函數(shù)y=tanax的最小周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案