14.已知函數(shù)f(x)的部分圖象如圖所示,則f(x)的解析式可能是( 。
A.f(x)=$\frac{sin2x}{{x}^{2}}$B.f(x)=$\frac{cos2x}{{x}^{2}}$C.f(x)=$\frac{co{s}^{2}x}{2x}$D.f(x)=$\frac{cos2x}{x}$

分析 利用函數(shù)圖象判斷奇偶性,排除選項(xiàng)B,取x=π排除A,然后利用x>0時(shí),f(x)的值有正有負(fù)排除C,則答案可求.

解答 解:根據(jù)函數(shù)f(x)的部分圖象,可得該函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,故該函數(shù)為奇函數(shù),
而B中的函數(shù)f(x)=$\frac{cos2x}{{x}^{2}}$為偶函數(shù),故排除B;
再根據(jù)當(dāng)x=π時(shí),f(x)>0,故排除A;
又當(dāng)x>0時(shí),f(x)的值有正有負(fù),故排除C;
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的圖象的判斷,解析式的對(duì)應(yīng)關(guān)系,考查分析問題解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正方體ABCD-A1B1C1D1中,M,N分別是棱A1D,DD1的中點(diǎn),則異面直線CM與AN所成角的大小是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.以平面直角坐標(biāo)系的坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,在極坐標(biāo)系中曲線C的極坐標(biāo)方程為 ρ2=$\frac{4(1{+tan}^{2}θ)}{1-ta{n}^{2}θ}$.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)過極點(diǎn)的射線l1:θ=α(ρ>0,-$\frac{π}{4}$<α<0)與曲線C交于點(diǎn)A,射線l1繞極點(diǎn)逆時(shí)針旋轉(zhuǎn)$\frac{π}{4}$得到射線l2,射線l2與曲線C交于點(diǎn)B,求|OA|•|OB|的最小值,以及此時(shí)點(diǎn)A的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,-π≤φ≤π)一個(gè)周期的圖象(如圖),則這個(gè)函數(shù)的一個(gè)解析式為(  )
A.y=2sin(3x-$\frac{π}{2}$)B.y=2sin(3x-$\frac{π}{6}$)C.y=2sin(3x+$\frac{π}{6}$)D.y=2sin($\frac{3}{2}$x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=x2+ex-$\frac{1}{2}$(x>0)與g(x)=x2+ln(x+a)的圖象上存在關(guān)于y軸對(duì)稱的點(diǎn),則a的取值范圍是(  )
A.(-$\sqrt{e}$,$\sqrt{e}$)B.(-$\sqrt{e}$,+∞)C.(-∞,$\sqrt{e}$)D.($\sqrt{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為大力提倡“厲行節(jié)約,反對(duì)浪費(fèi)”,某市通過隨機(jī)詢問100名性別不同的居民是否能做到“光盤”行動(dòng),得到如下的2×2列聯(lián)表:
  做不到“光盤” 能做到“光盤”
 男 45 10
 女 30 15
表:
P(K2≥k)0.100.050.025
k2.7063.8415.024
經(jīng)計(jì)算K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$參照附表,得到的正確結(jié)論是( 。
A.在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過2.5%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
C.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”
D.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x,若其圖象是由y=sin2x的圖象向左平移φ(φ>0)個(gè)單位得到的,則φ的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,用四中不同的顏色給圖中的A、B、C、D、E涂色,要求每個(gè)點(diǎn)涂一種顏色,且圖中每條線段的兩端點(diǎn)涂不同顏色,則不同的涂色方法有144種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z=$\frac{{{{(a+2i)}^2}}}{i}$,且z對(duì)應(yīng)的點(diǎn)在直線x=4上,則z的虛部為( 。
A.3B.3iC.-3D.-3i

查看答案和解析>>

同步練習(xí)冊(cè)答案