2.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=5,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=4,則△ABC的面積的最大值為6.

分析 設(shè)A、B、C所對邊分別為a,b,c,由$\overrightarrow{AB}$•$\overrightarrow{AC}$=5,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=4,得bccosA=5,a=4,結(jié)合余弦定理可得b2+c2,再由基本不等式可得bc最大值,即可求出△ABC面積的最大值

解答 解:設(shè)A、B、C所對邊分別為a,b,c,$\overrightarrow{AB}$•$\overrightarrow{AC}$=5,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=4,得bccosA=5,a=4①,
S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc$\sqrt{1-co{s}^{2}A}$=$\frac{1}{2}$bc$\sqrt{1-\frac{25}{^{2}{c}^{2}}}$=$\frac{1}{2}\sqrt{^{2}{c}^{2}-25}$,
由余弦定理可得b2+c2-2bccosA=16②,
由①②消掉cosA得b2+c2=26,由b2+c2≥2bc,
所以bc≤13,當(dāng)且僅當(dāng)b=c=6.5時(shí)取等號,
所以S△ABC=$\frac{1}{2}\sqrt{^{2}{c}^{2}-25}$≤6,
故△ABC的面積的最大值為6;
故答案為:6.

點(diǎn)評 本題考查平面向量數(shù)量積的運(yùn)算、三角形面積公式、基本不等式求最值等知識,綜合性較強(qiáng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知直線l過點(diǎn)A(4,2a),B(3,a2)(a∈R)兩點(diǎn),則直線l的傾斜角的取值范圍為[0,$\frac{π}{4}$]∪($\frac{π}{2}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法不正確的是(  )
A.頻率分布直方圖中每個(gè)小矩形的高就是該組的頻率
B.頻率分布直方圖中各個(gè)小矩形的面積之和等于1
C.頻率分布直方圖中各個(gè)小矩形的寬一樣大
D.頻率分布折線圖是依次連接頻率分布直方圖的每個(gè)小矩形上端中點(diǎn)得到的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知定義在x∈[-$\frac{π}{6}$,$\frac{π}{2}$]上的函數(shù)f(x)=sin(π-2x).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若方程f(x)=a只有一個(gè)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC中,三條邊a、b、c所對的角分別為A、B、C,向量$\overrightarrow{m}$=(sinA,cosA),$\overrightarrow{n}$=(cosB,sinB),且滿足$\overrightarrow{m}•\overrightarrow{n}$=sin2C,則角C的大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求解函數(shù)y=$\sqrt{-ta{n}^{2}x+(\sqrt{3}+1)tanx-\sqrt{3}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+2x,則f(-1)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.cos17°sin43°+sin17°sin47°( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.一$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在區(qū)間[0,5]上任取一個(gè)實(shí)數(shù)a,則使得不等式x+$\frac{1}{x-1}$≥a對所有x∈(1,+∞)恒成立的概率為$\frac{2}{5}$.

查看答案和解析>>

同步練習(xí)冊答案