5.已知定義在實數(shù)集R的函數(shù)f(x)滿足f(1)=4,且f(x)導(dǎo)函數(shù)f′(x)<3,則不等式f(lnx)>3lnx+1的解集為( 。
A.(1,+∞)B.(e,+∞)C.(0,1)D.(0,e)

分析 構(gòu)造函數(shù)g(x)=f(x)-2x-1,求函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性 即可得到結(jié)論

解答 解:設(shè)t=lnx,
則不等式f(lnx)>3lnx+1等價為f(t)>3t+1,
設(shè)g(x)=f(x)-3x-1,
則g′(x)=f′(x)-3,
∵f(x)的導(dǎo)函數(shù)f′(x)<3,
∴g′(x)=f′(x)-3<0,此時函數(shù)單調(diào)遞減,
∵f(1)=4,
∴g(1)=f(1)-3-1=0,
則當(dāng)x<1時,g(x)>g(1)=0,
即g(x)<0,則此時g(x)=f(x)-3x-1>0,
即不等式f(x)>3x+1的解為x<1,
即f(t)>3t+1的解為t<1,
由lnx<1,解得0<x<e,
即不等式f(lnx)>3lnx+1的解集為(0,e),
故選:D.

點評 本題主要考查不等式的求解,根據(jù)條件構(gòu)造函數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若(2x+$\sqrt{3}$)100=a0+a1x+a2x2+…+a100x100,則(a0+a2+a4+…+a1002-(a1+a3+a5+…+a992的值為( 。
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若向量$\overrightarrow a,\overrightarrow b$滿足:$|\overrightarrow a|=1$,$(\overrightarrow a+\overrightarrow b)⊥\overrightarrow a$,$(2\overrightarrow a+\overrightarrow b)⊥\overrightarrow b$,則$|\overrightarrow b|$=( 。
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{AB}⊥\overrightarrow{BC}$,$|\overrightarrow{AC}|=5$,$|\overrightarrow{BC}|=3$,則$\overrightarrow{AB}•\overrightarrow{AC}$=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在邊長為2的菱形ABCD中,∠BAD=60°,M,N分別為邊BC,CD的中點.

(1)用$\overrightarrow{AB}$、$\overrightarrow{AD}$表示$\overrightarrow{MN}$;
(2)求$\overrightarrow{AM}•\overrightarrow{AN}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x=lnπ,y=log${\;}_{\frac{1}{2}}$π,z=e${\;}^{-\frac{1}{2}}$,則( 。
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.計算$\int_0^2{\frac{x}{2}dx}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.將一副撲克牌的2,3,4共12張洗勻,從中1次隨機抽出2張牌,試求:
(1)抽出2張都為2的概率;
(2)兩張點數(shù)之和為6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$)+cosx.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若$α∈(0,\frac{π}{2})$,f(α+$\frac{π}{6}$)=$\frac{3\sqrt{3}}{5}$,求tan2α的值.

查看答案和解析>>

同步練習(xí)冊答案