5.已知直線x-2y+2=0經(jīng)過(guò)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為B,點(diǎn)S是橢圓上位于x軸上方的動(dòng)點(diǎn),直線AS,BS與直線l:x=$\frac{10}{3}$分別交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)確定線段MN的長(zhǎng)度有無(wú)最小值,若有,請(qǐng)求出最小值,若無(wú),請(qǐng)說(shuō)明理由.

分析 (1)由已知得,橢圓C的左頂點(diǎn)為A(-2,0),上頂點(diǎn)為D(0,1,由此能求出橢圓C的方程.
(2)設(shè)直線AS的方程為y=k(x+2),從而M($\frac{10}{3}$,$\frac{16}{3}k$).題設(shè)條件可以求出N($\frac{10}{3}$,-$\frac{1}{3k}$),所以|MN|=|$\frac{16k}{3}$+$\frac{1}{3k}$|,再由均值不等式進(jìn)行求解.

解答 解:(1)由已知得,橢圓C的左頂點(diǎn)為A(-2,0),上頂點(diǎn)為D(0,1),
∴a=2,b=1,
故橢圓C的方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)直線AS的斜率k顯然存在,且k>0,故可設(shè)直線AS的方程為y=k(x+2),從而M($\frac{10}{3}$,$\frac{16}{3}k$).
由y=k(x+2),代入橢圓方程得(1+4k2)x2+16k2x+16k2-4=0.
設(shè)S(x1,y1),則(-2)x1=$\frac{16{k}^{2}-4}{1+4{k}^{2}}$得x1=$\frac{2-8{k}^{2}}{1+4{k}^{2}}$,從而y1=$\frac{4k}{1+4{k}^{2}}$.
又B(2,0)
由$\left\{\begin{array}{l}{y=-\frac{1}{4k}(x-2)}\\{x=\frac{10}{3}}\end{array}\right.$得N($\frac{10}{3}$,-$\frac{1}{3k}$),
故|MN|=|$\frac{16k}{3}$+$\frac{1}{3k}$|,
又k>0,∴|MN|=$\frac{16k}{3}$+$\frac{1}{3k}$≥2$\sqrt{\frac{16k}{3}•\frac{1}{3k}}$=$\frac{8}{3}$,
當(dāng)且僅當(dāng)$\frac{16k}{3}$=$\frac{1}{3k}$,即k=$\frac{1}{4}$時(shí)等號(hào)成立
∴k=$\frac{1}{4}$時(shí),線段MN的長(zhǎng)度取最小值$\frac{8}{3}$.

點(diǎn)評(píng) 本題是解析幾何中直線與圓錐曲線位置關(guān)系中復(fù)雜的題目,要求答題者擁有較高的探究轉(zhuǎn)化能力以及對(duì)直線與圓錐曲線位置關(guān)系中特征有較好的理解,且符號(hào)運(yùn)算能力較強(qiáng)才能勝任此類(lèi)題的解題工作,這是一個(gè)能力型的題,好題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知變量x、y滿足約束條件:$\left\{\begin{array}{l}{y≥x}\\{x+2y≤2}\\{x≥-2}\end{array}\right.$,則z=x-3y的最小值是( 。
A.-$\frac{4}{3}$B.4C.-4D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.等差數(shù)列{an}中,若a15=10,a47=90,則a2+a4+…+a60=1500.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1an-2an+1+1=0,n∈N*
(1)求證:數(shù)列{$\frac{1}{{{a_n}-1}}$}是等差數(shù)列;
(2)求證:$\frac{n^2}{n+1}$<$\frac{a_1}{a_2}$+$\frac{a_2}{a_3}$+$\frac{a_3}{a_4}$+…+$\frac{a_n}{{{a_{n+1}}}}$<n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為A,點(diǎn)M(a,b)滿足MF2平分∠F1MA那么橢圓的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.過(guò)橢圓9x2+y2=1的一個(gè)焦點(diǎn)F1的直線與橢圓交于A,B兩點(diǎn),則A與B和橢圓的另一個(gè)焦點(diǎn)F2構(gòu)成的三角形ABF2的周長(zhǎng)是(  )
A.$\frac{4}{3}$B.4C.8D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知線段AB的端點(diǎn)B的坐標(biāo)為(4,-3),端點(diǎn)A在圓(x+4)2+(y-3)2=4上運(yùn)動(dòng).
(1)求線段AB的中點(diǎn)M的軌跡E的方程;
(2)設(shè)(1)中所求的軌跡E分別交x軸正、負(fù)半軸于G、H點(diǎn),交y軸正半軸于F點(diǎn),過(guò)點(diǎn)F的直線l交曲線E于D點(diǎn),且與x軸交于P點(diǎn),直線FH與GD交于點(diǎn)Q,O為坐標(biāo)原點(diǎn),求證:當(dāng)P點(diǎn)異于點(diǎn)G時(shí),$\overrightarrow{{O}{P}}•\overrightarrow{{O}Q}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點(diǎn)A為右頂點(diǎn),點(diǎn)B為上頂點(diǎn),坐標(biāo)原點(diǎn)O到直線AB的距離為$\frac{\sqrt{30}}{5}$c(其中c為半焦距),則橢圓的離心率e為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是它的左、右焦點(diǎn),A是橢圓上一點(diǎn),且$\overrightarrow{{F}_{1}{F}_{2}}$$•\overrightarrow{A{F}_{1}}$=0,|$\overrightarrow{{F}_{1}{F}_{2}}$|=$\frac{4}{3}$|$\overrightarrow{A{F}_{1}}$|,則橢圓的離心率為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案