【題目】已知:函數(shù).

(1)求定義域;

(2)判斷的奇偶性,并說明理由;

(3)求使的解集.

【答案】(1);(2)是奇函數(shù);(3).

【解析】試題分析:(1)利用對數(shù)函數(shù)的指數(shù)大于零,列出不等式組,解不等式組即可求解函數(shù)的定義域.(2)利用對數(shù)的運算法則可得,結合函數(shù)的定義域關于原點對稱,可得為奇函數(shù).(3)利用對數(shù)函數(shù)的單調性與定義域化簡不等式即可求解不等式.

試題解析:(1)由題意得 ,即﹣2<x<2.∴f(x)的定義域為(﹣2,2);

(2)∵對任意的x∈(﹣2,2),﹣x∈(﹣2,2)

f(﹣x)=loga(2﹣x)﹣loga(2+x)=﹣f(x),

∴f(x)=loga(2+x)﹣loga(2﹣x)是奇函數(shù);

(3)f(x)=loga(2+x)﹣loga(2﹣x)>0,即log2(2+x)>loga(2﹣x),

a∈(0,1)時,可得2+x<2﹣x,即﹣2<x<0.

a∈(1,+∞)時,可得2+x>2﹣x,即x∈(0,2).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱底面為正三角形,、分別、中點

,求證:

點,四棱錐體積為,求三棱錐表面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)R上的奇函數(shù),當x0時,解析式為f(x).

(1)f(x)R上的解析式;

(2)用定義證明f(x)(0,+∞)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P—ABCD的底面ABCD為矩形,PA⊥平面ABCD,點E是棱PD的中點,點F是PC的中點.

(Ⅰ)證明:PB∥平面AEC;

(Ⅱ)若底面ABCD為正方形,,求二面角C—AF—D大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列{an}中,a1=1,S5=-15.

(1) 求數(shù)列{an}的通項公式;

(2) 若數(shù)列{an}的前k項和Sk=-48,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出.若每輛車的月租金每增加50元,未租出的車將會增加一輛,租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.

(1)當每輛車的月租金定為3600元時,能租出多少輛車?

(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大,最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求實數(shù)的值;2)判斷并證明上的單調性;

3)若對任意實數(shù),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=.

(1)求f(2)+f,f(3)+f的值;

(2)求證:f(x)+f是定值;

(3)求f(2)+f+f(3)+f+…++f的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中石化集團獲得了某地深海油田區(qū)塊的開采權,集團在該地區(qū)隨機初步勘探了部分兒口井,取得了地質資料.進入全面勘探時期后,集團按網(wǎng)絡點來布置井位進行全面勘探. 由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料見如表:

(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計的預報值;

(Ⅱ)現(xiàn)準備勘探新井,若通過1、3、5、7號井計算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

(參考公式和計算結果:

(Ⅲ)設出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質井的概率.

查看答案和解析>>

同步練習冊答案