19.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S10=55,則a3+a8=( 。
A.5B.$\frac{11}{2}$C.10D.11

分析 利用等差數(shù)列前n項(xiàng)和公式得到S10=5(a3+a8),由此能求出a3+a8的值.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,S10=55,
∴S10=$\frac{10}{2}({a}_{1}+{a}_{10})$=$\frac{10}{2}({a}_{3}+{a}_{8})$=5(a3+a8)=55,
解得a3+a8=11.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知A(1,2),B(2,11),若直線y=(m-$\frac{6}{m}$)x+1(m≠0)與線段AB相交,則實(shí)數(shù)m的取值范圍是( 。
A.[-2,0)∪[3,+∞)B.(-∞,-1]∪(0,6]C.[-2,-1]∪[3,6]D.[-2,0)∪(0,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8-{a}^{2}}$=1(a>0)的焦點(diǎn)在x軸上.
(Ⅰ)若橢圓E的離心率e=$\frac{\sqrt{2}}{5}$a,求橢圓E的方程;
(Ⅱ)設(shè)F1、F2分別是橢圓E的左、右焦點(diǎn),P為直線x+y=2$\sqrt{2}$與橢圓E的一個(gè)公共點(diǎn),直線F2P交y軸于點(diǎn)Q,連結(jié)F1P,問(wèn)當(dāng)a變化時(shí),$\overrightarrow{{F}_{1}P}$與$\overrightarrow{{F}_{1}Q}$的夾角是否為定值,若是定值,求出該定值,若不是定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓C1:x2+y2=r2(r>0)與拋物線C2:x2=2py(p>0),點(diǎn)($\sqrt{2}$,-2)是圓C1與拋物線C2準(zhǔn)線l的一個(gè)交點(diǎn).
(1)求圓C1與拋物線C2的方程;
(2)若點(diǎn)M是直線l上的動(dòng)點(diǎn),過(guò)點(diǎn)M作拋物線C2的兩條切線,切點(diǎn)分別為A、B,直線AB與圓C1交于點(diǎn)E、F,求$\overrightarrow{OE}$•$\overrightarrow{OF}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某大學(xué)有甲、乙兩個(gè)圖書(shū)館,對(duì)其借書(shū)、還書(shū)的等待時(shí)間進(jìn)行調(diào)查,得到下表:
甲圖書(shū)館
 借(還)書(shū)等待時(shí)間T1(分鐘) 1 2 3 4 5
 頻數(shù)1500 1000 500 500 1500 
乙圖書(shū)館
 借(還)書(shū)等待時(shí)間T2(分鐘) 1 2 3 4 5
 頻數(shù) 1000 500 2000 1250 250
以表中等待時(shí)間的學(xué)生人數(shù)的頻率為概率.
(1)分別求在甲、乙兩圖書(shū)館借書(shū)的平均等待時(shí)間;
(2)學(xué)校規(guī)定借書(shū)、還書(shū)必須在同一圖書(shū)館,某學(xué)生需要借一本數(shù)學(xué)參考書(shū),并希望借、還書(shū)的等待時(shí)間之和不超過(guò)4分鐘,在哪個(gè)圖書(shū)館借、還書(shū)更能滿足他的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖所示,在Rt△ABC中,AC⊥BC,過(guò)點(diǎn)C的直線VC垂直于平面ABC,D、E分別為線段VA、VC上異于端點(diǎn)的點(diǎn).
(1)當(dāng)DE⊥平面VBC時(shí),判斷直線DE與平面ABC的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)D、E分別為線段VA、VC上的中點(diǎn),且BC=1,CA=$\sqrt{3}$,VC=2時(shí),求三棱錐A-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知雙曲線C2與橢圓C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1具有相同的焦點(diǎn),則兩條曲線相交四個(gè)交點(diǎn)形成四邊形面積最大時(shí)雙曲線C2的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.一個(gè)均勻小正方體的6個(gè)面中,三個(gè)面上標(biāo)以數(shù)字0,兩個(gè)面上標(biāo)以數(shù)字1,一個(gè)面上標(biāo)以數(shù)字2,將這個(gè)小正方體拋擲1次,則向上的數(shù)字為2的概率為$\frac{1}{6}$;將這個(gè)小正方體拋擲2次,則向上的數(shù)字之積的數(shù)學(xué)期望是$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知直線y=ax-2與直線y=(a+2)x-2互相垂直,則a=( 。
A.-1B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案