分析 由O為球心可得△ABC是直角三角形,AB為球的直徑,利用勾股定理求出BC,代入棱錐的體積公式計(jì)算體積.
解答 解:∵三棱錐S-ABC的外接球球心在AB上,
∴OS=OA=OB=1,
∠ACB=90°,
∴AC=$\sqrt{2}$,∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=$\sqrt{2}$,
∵SO⊥平面ABC,
∴VS-ABC=$\frac{1}{3}{S}_{△ABC}•OS$=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×1=\frac{1}{3}$.
故答案為:$\frac{1}{3}$.
點(diǎn)評(píng) 本題考查了棱錐與外接球的關(guān)系,棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在(-$\frac{π}{12}$,$\frac{π}{6}$)單調(diào)遞增 | B. | 在(-$\frac{5π}{6}$,-$\frac{7π}{12}$)單調(diào)遞減 | ||
C. | x=-$\frac{5π}{6}$是其一條對(duì)稱軸 | D. | (-$\frac{π}{12}$,0)是其一個(gè)對(duì)稱中心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1:\sqrt{3}$ | B. | 1:3 | C. | $1:3\sqrt{3}$ | D. | 1:9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{17}$ | B. | $\sqrt{13}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | $4\sqrt{3}$ | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com