9.命題“?x∈R,x2+6ax+1<0”為假命題,則a的取值范圍是$[{-\frac{1}{3},\frac{1}{3}}]$.

分析 由命題間的邏輯關(guān)系可知,原命題為假命題,則命題的否定為真,只需判斷命題的否定即可.

解答 解:由命題“?x∈R,x2+6ax+1<0”為假命題,
∴命題的否定為“?x∈R,x2+6ax+1≥0”為真命題,
∴△=36a2-4≤0,
∴a的范圍為$[{-\frac{1}{3},\frac{1}{3}}]$,
故答案為$[{-\frac{1}{3},\frac{1}{3}}]$.

點評 考查了命題間的邏輯關(guān)系和二次函數(shù)的性質(zhì),屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.比較30.2與log30.2的大小,按從小到大的順序為log30.2<30.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知向量|$\overrightarrow a}$|=4,$\overrightarrow e$為單位向量,當他們之間的夾角為$\frac{π}{3}$時,$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影與$\overrightarrow{e}$在$\overrightarrow{a}$方向上的投影分別為( 。
A.2$\sqrt{3}$,$\frac{\sqrt{3}}{2}$B.2,$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$,2$\sqrt{3}$D.2,2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,剩下的2組數(shù)據(jù)用于回歸方程檢驗.
(1)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}=\stackrel{∧}x+\stackrel{∧}{a}$;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(3)請預測溫差為14℃的發(fā)芽數(shù).
其中
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{{x}^{\;}}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)y=cos(πx-$\frac{π}{3}$)的最小正周期為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知拋物線y2=4x的焦點為F,點P是拋物線上的動點,A(2,2),則|PA|+|PF|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在一次數(shù)學測試中,某班40名學生的成績頻率分布直方圖如圖所示(學生成績都在[50,100]之間).
(Ⅰ)求頻率分布直方圖中a的值,并估算該班數(shù)學成績的平均值;
(Ⅱ)若規(guī)定成績達到90分及以上為優(yōu)秀,從該班40名學生中任選2人,求至少有一人成績?yōu)閮?yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知橢圓方程為$\frac{x^2}{16}+\frac{y^2}{9}$=1,則它的兩焦點之間的距離為$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已經(jīng)集合M={x|1<x<4},N={x|x=2a+1,a∈M},則集合M∪N={x|1<x<9}.

查看答案和解析>>

同步練習冊答案