1.在一次數(shù)學(xué)測試中,某班40名學(xué)生的成績頻率分布直方圖如圖所示(學(xué)生成績都在[50,100]之間).
(Ⅰ)求頻率分布直方圖中a的值,并估算該班數(shù)學(xué)成績的平均值;
(Ⅱ)若規(guī)定成績達到90分及以上為優(yōu)秀,從該班40名學(xué)生中任選2人,求至少有一人成績?yōu)閮?yōu)秀的概率.

分析 (Ⅰ)根據(jù)頻率和為1,列出方程,求出a的值,利用組中值,即可估算該班級的平均分;
(Ⅱ)根據(jù)成績?yōu)閮?yōu)秀的有4人,根據(jù)互斥事件的概率公式計算即可.

解答 解:(Ⅰ)由題意得,(2a+2a+3a+6a+7a)×10=1,解得a=0.005.
平均成績約為$55×\frac{2}{20}+65×\frac{3}{20}+75×\frac{7}{20}+85×\frac{6}{20}+95×\frac{2}{20}=76.5$;
(Ⅱ)90分及以上人數(shù)為$40×\frac{2}{20}=4$人.
設(shè)“至少有一人成績?yōu)閮?yōu)秀”為事件A,則$P(A)=1-\frac{{C_{36}^2}}{{C_{40}^2}}=\frac{5}{26}$

點評 本題考查了頻率分布直方圖的應(yīng)用問題,也考查了概率的計算,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{2a}{e}$x-lnx(a∈R,e為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)f(x)的極值點;
(Ⅱ)當(dāng)a=1時,求證:f(x)-$\frac{{x}^{2}}{{e}^{x}}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某區(qū)實驗幼兒園對兒童記憶能力x與識圖能力y進行統(tǒng)計分析,得到如下數(shù)據(jù):
記憶能力x46810
識圖能力y3568
由表中數(shù)據(jù),求得線性回歸方程為y=$\frac{4}{5}$x+a,則a=( 。
A.0.1B.-0.1C.0.2D.-0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題“?x∈R,x2+6ax+1<0”為假命題,則a的取值范圍是$[{-\frac{1}{3},\frac{1}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}的前n項和為Sn,且滿足a1=$\sqrt{3}$,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$(n∈N*),則S2017=( 。
A.-$\sqrt{3}$B.0C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法錯誤的是( 。
A.已知a,b,m∈R,命題“若am2<bm2,則a<b”為真命題
B.命題“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”
C.命題“p且q”為真命題,則命題p和命題q均為真命題
D.“x>3”是“x>2”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\frac{{{x^2}-4x+5}}{x-2}$(x>2),當(dāng)且僅當(dāng)x=3時,f(x)取到最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.用更相減損術(shù),求下列兩數(shù)的最大公約數(shù):
(1)225,135;                      
(2)98,280.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某工廠周一到周六輪到有甲乙丙3人值班,每人值兩天,3人通過抽簽決定每個人在哪兩天值班,則周六由乙值班的概率是$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案