2.通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項運(yùn)動,得到如下的列聯(lián)表:
愛好4020
不愛好2030
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認(rèn)為性別與愛好某項運(yùn)動有關(guān)系?

分析 根據(jù)條件中所給的觀測值,同題目中節(jié)選的觀測值表進(jìn)行檢驗,得到觀測值對應(yīng)的結(jié)果,得到結(jié)論在犯錯誤的概率不超過0.01的前提下認(rèn)為性別與愛好某項運(yùn)動有關(guān)系.

解答 解:由題意,K2=$\frac{110×(40×30-20×20)^{2}}{60×50×60×50}$=7.822>6.635,
所以在犯錯誤的概率不超過0.01的前提下,可以認(rèn)為性別與愛好某項運(yùn)動有關(guān)系.

點評 本題考查獨立性檢驗的應(yīng)用,考查對于觀測值表的認(rèn)識,這種題目一般運(yùn)算量比較大,主要要考查運(yùn)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}的公比為q(0<q<1),且a2+a5=$\frac{9}{8}$,a3a4=$\frac{1}{8}$.
(I)求數(shù)列{an}的通項公式;
(II)若bn=an•(log2an),求bn的前n項和Tn
(III)設(shè)該等比數(shù)列{an}的前n項和為Sn,正整數(shù)m,n滿足$\frac{{S}_{n}-m}{{S}_{n+1}-m}$<$\frac{1}{2}$,求出所有符合條件的m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計算
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-(${\frac{49}{9}}$)0.5+(0.008)${\;}^{-\frac{2}{3}}}$×$\frac{2}{25}$;
(2)lg25+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算:$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4;
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,點M、N分別為線段A1B、AC1的中點.
(1)求證:MN∥平面BB1C1C;
(2)若D在邊BC上,AD⊥DC1,求證:MN⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=1$的漸近線方程為y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=|2x-1|+|x-a|,a∈R.
(Ⅰ)當(dāng)a=3時,解不等式f(x)≤4;
(Ⅱ)若f(x)=|x-1+a|,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若兩個正數(shù)a,b滿足2a+b<4,則$z=\frac{b+2}{2a-2}$的取值范圍是( 。
A.{z|-1≤z≤1}B.{z|-1≥z或z≥1}C.{z|-1<z<1}D.{z|-1>z或z>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)m,n,l為空間不重合的直線,α,β,γ為空間不重合的平面,則下列命題中真命題的序號是(1)(3).
(1)m∥l,n∥l,則m∥n;
(2)m⊥l,n⊥l,則m∥n;
(3)α∥γ,β∥γ,則α∥β;
(4)α⊥γ,β⊥γ,則α∥β.

查看答案和解析>>

同步練習(xí)冊答案