6.若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{c}=\overrightarrow{a}+\overrightarrow$,且$\overrightarrow{c}⊥\overrightarrow{a}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{3π}{4}$.

分析 根據(jù)向量的數(shù)量積運(yùn)算和向量的夾角公式即可求出.

解答 解:設(shè)向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,
∵$\overrightarrow{c}=\overrightarrow{a}+\overrightarrow$,且$\overrightarrow{c}⊥\overrightarrow{a}$,
∴$\overrightarrow{c}$•$\overrightarrow{a}$=($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$+$\overrightarrow{a}$$•\overrightarrow$=|$\overrightarrow{a}$|2+|$\overrightarrow{a}$|•|$\overrightarrow$|cosθ=0,
即1+$\sqrt{2}$cosθ=0,
即cosθ=-$\frac{\sqrt{2}}{2}$,
∵0≤θ≤π
∴θ=$\frac{3π}{4}$,
故答案為:$\frac{3π}{4}$.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積運(yùn)算和向量模的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.$\frac{lo{g}_{8}\frac{1}{9}}{lo{g}_{2}10}•\frac{1}{lg3}$的值是$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=|2x+a|-|x-2|.
(Ⅰ)當(dāng)a=1時(shí),求不等式f(x)<2的解集;
(Ⅱ)若存在實(shí)數(shù)x使f(x)≥|x-2|+3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$α∈(\frac{π}{2},π)$,$sinα=\frac{4}{5}$,則sin2α=( 。
A.$-\frac{24}{25}$B.$-\frac{7}{25}$C.$\frac{7}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在△ABC中,cosB=$\frac{11}{14}$,BC=7,點(diǎn)D在邊AB上,且BD=3.
(Ⅰ)求DC的長(zhǎng);
(Ⅱ)若A=45°,求AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x-y-1≥0}\\{x+2y-4≥0}\\{x-3y-4≤0}\end{array}\right.$,則z=x2+y2的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在邊長(zhǎng)為4的等邊三角形OAB內(nèi)部任取一點(diǎn)P,使得$\overrightarrow{OA}$•$\overrightarrow{OP}$≤4的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若數(shù)列{an}滿(mǎn)足a1=2,an+1=an+log2(1-$\frac{1}{n+1}$),則a32=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<0)圖象的相鄰對(duì)稱(chēng)軸之間的距離為$\frac{π}{2}$,且該函數(shù)圖象的一個(gè)最高點(diǎn)為($\frac{5π}{12}$,4).
(1)求函數(shù)f(x)的解析式和單調(diào)增區(qū)間;
(2)若f(x0)=2(x0∈(0,2π)),求x0的取值集合;
(3)若對(duì)區(qū)間[$\frac{π}{4}$,$\frac{π}{2}$]內(nèi)的任意實(shí)數(shù)x1,x2,都有|f(x1)-f(x2)|<m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案