14.已知$α∈(\frac{π}{2},π)$,$sinα=\frac{4}{5}$,則sin2α=( 。
A.$-\frac{24}{25}$B.$-\frac{7}{25}$C.$\frac{7}{25}$D.$\frac{24}{25}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,利用二倍角公式即可得解.

解答 解:∵$α∈(\frac{π}{2},π)$,$sinα=\frac{4}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{3}{5}$,
∴sin2α=2sinαcosα=2×$\frac{4}{5}$×(-$\frac{3}{5}$)=-$\frac{24}{25}$.
故選:A.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的前n項和為Sn,a5=12,a20=-18.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{an}的前多少項之和最大?求此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$,且|$\overrightarrow$|=1,|$\overrightarrow{a}$+2$\overrightarrow$|=2$\sqrt{3}$,則|$\overrightarrow{a}$|=( 。
A.2B.$\sqrt{3}$C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.△ABC的三內(nèi)角A、B、C的對邊邊長分別為a、b、c,若a=$\frac{{2\sqrt{5}}}{3}$b,A=2B,則sinB=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知全集U為實數(shù)集,集合A={x|x2-2x-3<0},B={x|y=ln(1-x)},則圖中陰影部分的集合為( 。
A.{x|-1<x<1}B.{x|1≤x<3}C.{x|x<3}D.{x|x≤-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.復(fù)數(shù)z=$\frac{2}{1+i}$(i是虛數(shù)單位)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點是( 。
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{c}=\overrightarrow{a}+\overrightarrow$,且$\overrightarrow{c}⊥\overrightarrow{a}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個幾何體的三視圖如圖所示,其中正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,則這個幾何體的體積是( 。
A.72B.80C.120D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a1=4,an+1=$\frac{{2a}_{n}}{{2a}_{n}+1}$,則an=$\frac{1}{2-7•(\frac{1}{2})^{n+1}}$.

查看答案和解析>>

同步練習(xí)冊答案