2.已知函數(shù)f(x)=|2x-1|.
(1)求不等式f(x)<4;
(2)若函數(shù)g(x)=f(x)+f(x-1)的最小值為a,且m+n=a(m>0,n>0),求$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}$的取值范圍.

分析 (1)問題轉(zhuǎn)化為-4<2x-1<4,解出即可;(2)求出g(x)的最小值,得到m+n=2,根據(jù)基本不等式的性質(zhì)求出其范圍即可.

解答 解:(1)由f(x)<4知|2x-1|<4,
于是-4<2x-1<4,
解得$-\frac{3}{2}<x<\frac{5}{2}$,
故不等式f(x)<2的解集為$(-\frac{3}{2},\frac{5}{2})$.
(2)由條件得g(x)=|2x-1|+|2x-3|≥|2x-1-(2x-3)|=2,
當且僅當$x∈[\frac{1}{2},\frac{3}{2}]$時,其最小值a=2,即m+n=2.
又$\frac{2}{m}+\frac{1}{n}=\frac{1}{2}(m+n)(\frac{2}{m}+\frac{1}{n})=\frac{1}{2}(3+\frac{2n}{m}+\frac{m}{n})≥\frac{1}{2}(3+2\sqrt{2})$,
所以$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}=m+n+\frac{2}{m}+\frac{1}{n}≥2+\frac{1}{2}(3+2\sqrt{2})=\frac{{7+2\sqrt{2}}}{2}$,
故$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}$的取值范圍為$[{\frac{{7+2\sqrt{2}}}{2},+∞})$,
此時$m=4-2\sqrt{2}$,$n=2\sqrt{2}-2$.

點評 本題考查了解絕對值不等式問題,考查基本不等式性質(zhì),是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.指出下列變量哪些是隨機變量,哪些不是隨機變量.
(1)投擲三枚硬幣,可能出現(xiàn)正面向上的結(jié)果數(shù);
(2)投擲一枚骰子得到的點數(shù);
(3)高二一班的學生,期中考試后,數(shù)學分數(shù)在80分以上的人數(shù);
(4)水會在100℃時沸騰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)y=$\sqrt{9-{x}^{2}}$,x∈[-3,3]的值域為(  )
A.(-∞,3]B.[3,+∞)C.[0,3]D.(0,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知tanx=2,則$\frac{2cosx-sinx}{cosx}$( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知a,b∈R,函數(shù)f(x)=ax-b,若對任意x∈[-1,1],有0≤f(x)≤1,則$\frac{3a+b+1}{a+2b-2}$的取值范圍為( 。
A.[-$\frac{1}{2}$,0]B.[-$\frac{4}{5}$,0]C.[-$\frac{1}{2}$,$\frac{2}{7}$]D.[-$\frac{4}{5}$,$\frac{2}{7}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a2+b2-c2=ab=$\sqrt{3}$,則△ABC的面積為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知向量$\overrightarrow a$,$\overrightarrow b$滿足:|$\overrightarrow a$|=1,|$\overrightarrow b$|=6,$\overrightarrow a$•($\overrightarrow b$-$\overrightarrow{a}$)=2
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角
(2)求|2$\overrightarrow a$-$\overrightarrow b$|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.函數(shù)f(x)=$\left\{\begin{array}{l}{aln(x+1),x≥0}\\{\frac{1}{3}{x}^{3}-ax,x<0}\end{array}\right.$g(x)=ex-1,函數(shù)y=f(x)的圖象在點(1,f(1))與點(-1,f(-1))處的切線互相垂直,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2.
(1)若$\overrightarrow{a}$、$\overrightarrow$的夾角為45°,求|$\overrightarrow{a}$+$\overrightarrow$|
(2)若($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

同步練習冊答案