3.已知變量x,y的取值如表所示:
x456
y867
如果y與x線性相關(guān),且線性回歸方程為$\hat y=\hat bx+2$,則$\hat b$的值為(  )
A.1B.$\frac{3}{2}$C.$\frac{4}{5}$D.$\frac{5}{6}$

分析 根據(jù)所給的三組數(shù)據(jù),求出這組數(shù)據(jù)的平均數(shù),得到這組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)線性回歸直線一定過(guò)樣本中心點(diǎn),把樣本中心點(diǎn)代入所給的方程,得到$\hat b$的值.

解答 解:根據(jù)所給的三對(duì)數(shù)據(jù),得到$\overline{x}$=$\frac{1}{3}×(4+5+6)$=5,$\overline{y}$=$\frac{1}{3}×(8+6+7)$=7,
∴這組數(shù)據(jù)的樣本中心點(diǎn)是(5,7)
∵線性回歸直線的方程一定過(guò)樣本中心點(diǎn),
∴7=5$\hat b$+2,
∴$\hat b$=1.
故選:A.

點(diǎn)評(píng) 本題考查線性回歸方程,考查數(shù)據(jù)的樣本中心點(diǎn),考查樣本中心點(diǎn)和線性回歸直線的關(guān)系,本題是一個(gè)基礎(chǔ)題,運(yùn)算量不大,解題的依據(jù)也不復(fù)雜.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在一次解題比賽中,甲、乙兩組各四名同學(xué)答對(duì)題目數(shù)如莖葉圖所示.
(1)當(dāng)X=8,求乙組同學(xué)答對(duì)題目數(shù)的平均數(shù)和方差;
(2)當(dāng)X=9,用抽簽的方法分別從甲、乙兩組各選取一名同學(xué),若這兩名同學(xué)答對(duì)題目數(shù)的和為Y,求Y的分布列和數(shù)學(xué)期望.
(注:方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為x1,x2,…,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x3-3x2-9x-3
(1)若函數(shù)f(x)在點(diǎn)(x0,f(x0))處的切線方程為y=-9x+b,求b的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=x+\frac{a}{x}+lnx(a∈R)$
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的函數(shù)$g(x)=\frac{lnx}{x^2}-f(x)+lnx+2e$有且只有一個(gè)零點(diǎn),求a的值(e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=lnx-ax+\frac{1-a}{x}-1(a∈R)$
(1)當(dāng)$0<a<\frac{1}{2}$時(shí),討論f(x)的單調(diào)性
(2)設(shè)g(x)=x2-2bx+4.當(dāng)$a=\frac{1}{4}$時(shí),若對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實(shí)數(shù)b取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知點(diǎn)R(x0,y0)在D:y2=2px上,以R為切點(diǎn)的D的切線的斜率為$\frac{P}{{y}_{0}}$,過(guò)Γ外一點(diǎn)A(不在x軸上)作Γ的切線AB、AC,點(diǎn)B、C為切點(diǎn),作平行于BC的切線MN(切點(diǎn)為D),點(diǎn)M、N分別是與AB、AC的交點(diǎn)(如圖).
(1)用B、C的縱坐標(biāo)s、t表示直線BC的斜率;
(2)設(shè)三角形△ABC面積為S,若將由過(guò)Γ外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試?yán)谩扒芯三角形”的面積和計(jì)算由拋物線及BC所圍成的陰影部分的面積T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{\frac{x}{x-1},x≤0}\\{-{x^2}+6x-5,x>0}\end{array}}\right.$,若函數(shù) y=f[f(x)-a]有6個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是-4≤a≤-1或a<-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,已知直三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的正三角形,E,F(xiàn)分別是AA1,CC1的中點(diǎn),且BE⊥B1F.
(1)求證:B1F⊥平面BEC1;
(2)求二面角A-BC1-E的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某個(gè)多面體的三視圖,若該多面體的所有頂點(diǎn)都在球O的表面上,則球O的表面積是( 。
A.B.12πC.16πD.32π

查看答案和解析>>

同步練習(xí)冊(cè)答案