【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):

溫差

8

10

11

12

13

發(fā)芽數(shù)(顆)

79

81

85

86

90

(1)請(qǐng)根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過(guò)兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;

(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場(chǎng)有土地10萬(wàn)畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場(chǎng)種植小麥所獲得的收益.

附:在線性回歸方程中,.

【答案】(1)(2)見(jiàn)解析(3)7950萬(wàn)元

【解析】

1)先進(jìn)行數(shù)據(jù)處理:每個(gè)溫差值減去12,每個(gè)發(fā)芽數(shù)減去86,得到新的數(shù)據(jù)表格,求出的值,最后求出關(guān)于的線性回歸方程;

(2)根據(jù)線回歸方程,分別計(jì)算當(dāng)時(shí),當(dāng)時(shí),它們的估計(jì)值,然后判斷(1)中得到的線性回歸方程是否可靠;

(3)當(dāng)時(shí),根據(jù)線性回歸方程計(jì)算出的值,然后計(jì)算出發(fā)芽率以及收益.

數(shù)據(jù)處理;.

(1)

-1

0

1

-1

0

4

此時(shí):,,

,∴.

(2)當(dāng)時(shí):,符合,

當(dāng)時(shí):符合,

前兩組數(shù)據(jù)均符合題意,該回歸直線方程可靠.

(3)當(dāng)時(shí),.

發(fā)芽率,∴.

收益:(萬(wàn)畝)(萬(wàn)元).

種植小麥?zhǔn)找鏋?950萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于給定的正整數(shù)k,若數(shù)列{an}滿足

=2kan對(duì)任意正整數(shù)n(n> k) 總成立,則稱數(shù)列{an} 是“P(k)數(shù)列”.

(1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;

若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在實(shí)數(shù)集上的奇函數(shù),為非正的常數(shù),且當(dāng)時(shí),.若存在實(shí)數(shù),使得的定義域與值域都為,則實(shí)數(shù)的取值范圍是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=lnxmx2,gx=+x,m∈R,Fx=fx+gx).

)當(dāng)m=時(shí),求函數(shù)fx)的單調(diào)遞增區(qū)間;

)若關(guān)于x的不等式Fx≤mx1恒成立,求整數(shù)m的最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.

(1)求直線與平面所成角的正弦值;

(2)若點(diǎn)M,N分別在AB,PC上,且平面,試確定點(diǎn)M,N的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處的切線與直線平行.

1)求實(shí)數(shù)的值;

2)若函數(shù)上恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

3)記函數(shù),設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù),.為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)已知曲線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在橢圓上且,關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,過(guò)的垂線交橢圓于另一點(diǎn),連軸于.

1)求橢圓的方程;

2)求證:軸;

3)記的面積為的面積為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案