精英家教網 > 高中數學 > 題目詳情

【題目】我市正在創(chuàng)建全國文明城市,某高中為了解學生的創(chuàng)文知曉率,按分層抽樣的方法從“表演社”、“演講社”、“圍棋社”三個活動小組中隨機抽取了6人進行問卷調查,各活動小組人數統計如下圖:

(1)從參加問卷調查的6名學生中隨機抽取2名,求這2名學生來自同一小組的概率;

(2)從參加問卷調查的6名學生中隨機抽取3名,用表示抽得“表演社”小組的學生人數,求的分布列及數學期望.

【答案】(1)(2)詳見解析

【解析】

(1)由題意按分層抽樣的方法抽取6人,則三個小組分別抽取3人,2人,1人.利用古典概型計算公式得到這2名學生來自同一小組的概率;

(2)X的可能取值為0,1,2,3,分別求出相應的概率,由此能求出X的分布列和數學期望.

(1)由條件可知,表演社、演講社、圍棋社分別有45人、30人、15人,從中按分層抽樣的方法抽取6人,則三個小組分別抽取3人,2人,1人.

從中抽取2名,則這2名學生來自同一小組的概率為.

(2)的所有可能取值為0,1,2,3,

,

,

,

所以的分布列為

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】、、個數中一次隨機地取個數,記所取的這個數的和為,則下列說法錯誤的是(

A.事件“”的概率為

B.事件“”的概率為

C.事件“”與事件“”為互斥事件

D.事件“”與事件“”互為對立事件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖設計一幅矩形宣傳畫,要求畫面面積為4840,畫面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫面高與寬的尺寸,才能使宣傳畫所用紙張面積最?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足,且

(1)求證:數列是等差數列,并求出數列的通項公式;

(2)求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為,防洪堤高記為(如圖),考慮到防洪堤堅固性及石塊用料等因素,設計其斷面面積為平方米,為了使堤的上面與兩側面的水泥用料最省,則斷面的外周長)要最。

1)用表示、;

2)將表示成的函數,如限制在范圍內,最小為多少米?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某班學生喜好體育運動是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:

喜好體育運動

不喜好體育運動

合計

男生

5

女生

10

合計

50

已知按喜好體育運動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運動的人數為6.

(1)請將上面的列聯表補充完整;

(2)能否在犯錯概率不超過的前提下認為喜好體育運動與性別有關?說明你的理由.

(參考公式: )

臨界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線和平面:①若直線與平面內的無數條直線平行,則;②若直線與平面內的任意一條直線都不平行,則直線和平面相交;③若,則直線與平面內某些直線平行;④若,則存在平面內的直線,使.以上結論中正確的個數為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數在一個周期內的圖象如圖所示.

1)求函數的解析式.

2)求方程的解的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某媒體為調查喜愛娛樂節(jié)目是否與觀眾性別有關,隨機抽取了30名男性和30名女性觀眾,抽查結果用等高條形圖表示如圖:

(1)根據該等高條形圖,完成下列列聯表,并用獨立性檢驗的方法分析,能否在犯錯誤的概率不超過0.05的前提下認為喜歡娛樂節(jié)目與觀眾性別有關?

(2)從性觀眾中按喜歡節(jié)目與否,用分層抽樣的方法抽取5名做進一步調查.從這5名中任選2名,求恰有1名喜歡節(jié)目和1名不喜歡節(jié)目的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案